SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Souza Janaina S) "

Sökning: WFRF:(de Souza Janaina S)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Householder, John Ethan, et al. (författare)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • Ingår i: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
2.
  • Luize, Bruno Garcia, et al. (författare)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • Ingår i: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
3.
  • ter Steege, Hans, et al. (författare)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • Ingår i: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
4.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
5.
  • Cooper, Declan L.M., et al. (författare)
  • Consistent patterns of common species across tropical tree communities
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 728-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
  •  
6.
  • da Silva, Luiz A, et al. (författare)
  • Unravelling the intravenous and in situ vasopressin effects on the urinary bladder in anesthetized female rats: More than one vasopressin receptor subtype involved?
  • 2018
  • Ingår i: European journal of pharmacology. - : Elsevier BV. - 1879-0712 .- 0014-2999. ; 834, s. 109-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary bladder dysfunctions show high prevalence in women. We focused to investigate the intravenous and in situ (topic) vasopressin effects on the bladder and also to characterize the vasopressin receptor subtypes in the bladder. Adult female Wistar rats anesthetized with isoflurane underwent to the cannulation of the femoral artery and vein, and also urinary bladder for mean arterial pressure, heart rate and intravesical pressure (IP) recordings, respectively. Doppler flow probe was placed around the renal artery for blood flow measurement. After baseline recordings, intravenous injection of saline or vasopressin at different doses (0.25, 0.5, 1.0ng/ml/kg of b.w.); or 0.1ml of saline or 0.1ml of vasopressin at different doses (0.25, 0.5, 1.0ng/ml) was randomly dropped on the bladder. In another group of rats, the UB was harvest for gene expression by qPCR and also for protein expression by Western blotting of the vasopressin receptor subtypes. We observed that either intravenous or in situ vasopressin evoked a huge increase in the IP in a dose-dependent manner compared to saline, whilst no differences were observed in the cardiovascular parameters. The genes and the protein expression of V1a, V1b and V2 vasopressin receptors subtypes were found in the bladder. Intravenous injection of V1a or V2 receptor antagonist evoked a huge fall in IP and 30min later, i.v or in situ vasopressin evoked responses on IP were significantly attenuated. Therefore, intravenous or in situ vasopressin increases the IP due to binding in V1a or V2 receptors localized in the bladder.
  •  
7.
  • Lamy, Gustavo B, et al. (författare)
  • Lateral Preoptic Area Neurons Activated by Angiotensin-(1-7) Increase Intravesical Pressure: A Novel Feature in Central Micturition Control.
  • 2021
  • Ingår i: Frontiers in physiology. - : Frontiers Media SA. - 1664-042X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Central micturition control and urine storage involve a multisynaptic neuronal circuit for the efferent control of the urinary bladder. Electrical stimulation of the lateral preoptic area (LPA) at the level of the decussation of the anterior commissure in cats evokes relaxation of the bladder, whereas ventral stimulation of LPA evokes vigorous contraction. Endogenous Angiotensin-(1-7) [(Ang-(1-7)] synthesis depends on ACE-2, and its actions on binding to Mas receptors, which were found in LPA neurons. We aimed to investigate the Ang-(1-7) actions into the LPA on intravesical pressure (IP) and cardiovascular parameters. The gene and protein expressions of Mas receptors and ACE-2 were also evaluated in the LPA. Angiotensin-(1-7) (5 nmol/μL) or A-779 (Mas receptor antagonist, 50 nmol/μL) was injected into the LPA in anesthetized female Wistar rats; and the IP, mean arterial pressure (MAP), heart rate (HR), and renal conductance (RC) were recorded for 30 min. Unilateral injection of Ang-(1-7) into the LPA increased IP (187.46 ± 37.23%) with peak response at ∼23-25-min post-injection and yielded no changes in MAP, HR, and RC. Unilateral or bilateral injections of A-779 into the LPA decreased IP (-15.88 ± 2.76 and -27.30 ± 3.40%, respectively) and elicited no changes in MAP, HR, and RC. The genes and the protein expression of Mas receptors and ACE-2 were found in the LPA. Therefore, the LPA is an important part of the circuit involved in the urinary bladder control, in which the Ang-(1-7) synthetized into the LPA activates Mas receptors for increasing the IP independent on changes in RC and cardiovascular parameters.
  •  
8.
  • Lamy, Gustavo B, et al. (författare)
  • Unveiling the Angiotensin-(1-7) Actions on the Urinary Bladder in Female Rats
  • 2022
  • Ingår i: Frontiers in physiology. - : Frontiers Media SA. - 1664-042X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin-(1-7) is a peptide produced by different pathways, and regardless of the route, the angiotensin-converting enzyme 2 (ACE-2) is involved in one of the steps of its synthesis. Angiotensin-(1-7) binds to Mas receptors localized in different cells throughout the body. Whether angiotensin-(1-7) exerts any action in the urinary bladder (UB) is still unknown. We investigated the effects of intravenous and topical (in situ) administration of angiotensin-(1-7) on intravesical pressure (IP) and cardiovascular variables. In addition, the Mas receptors and ACE-2 gene and protein expression were analyzed in the UB. Adult female Wistar rats were anesthetized with 2% isoflurane in 100% O2 and submitted to the catheterization of the femoral artery and vein for mean arterial pressure (MAP) and heart rate (HR) recordings, and infusion of drugs, respectively. The renal blood flow was acquired using a Doppler flow probe placed around the left renal artery and the renal conductance (RC) was calculated as a ratio of Doppler shift (kHz) and MAP. The cannulation of the UB was performed for IP recording. We observed that angiotensin-(1-7) either administered intravenously [115.8 ± 28.6% angiotensin-(1-7) vs. -2.9 ± 1.3% saline] or topically [147.4 ± 18.9% angiotensin-(1-7) vs. 3.2 ± 2.8% saline] onto the UB evoked a significant (p < 0.05) increase in IP compared to saline and yielded no changes in MAP, HR, and RC. The marked response of angiotensin-(1-7) on the UB was also investigated using quantitative real-time polymerase chain reaction and western blotting assay, which demonstrated the mRNA and protein expression of Mas receptors in the bladder, respectively. ACE-2 mRNA and protein expression was also observed in the bladder. Therefore, the findings demonstrate that angiotensin-(1-7) acts in the UB to increase the IP and suggest that this peptide can be also locally synthesized in the UB.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (8)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Barlow, Jos (5)
Berenguer, Erika (5)
Phillips, Oliver L. (4)
Carvalho, Fernanda A ... (4)
ter Steege, Hans (4)
Damasco, Gabriel, 19 ... (4)
visa fler...
Balslev, Henrik (4)
de Aguiar, Daniel P. ... (4)
Ahuite Reategui, Man ... (4)
Albuquerque, Bianca ... (4)
Alonso, Alfonso (4)
do Amaral, Dário Dan ... (4)
do Amaral, Iêda Leão (4)
Andrade, Ana (4)
de Andrade Miranda, ... (4)
Araujo-Murakami, Ale ... (4)
Arroyo, Luzmila (4)
Aymard C, Gerardo A. (4)
Baider, Cláudia (4)
Bánki, Olaf S. (4)
Baraloto, Chris (4)
Barbosa, Edelcilio M ... (4)
Barbosa, Flávia Rodr ... (4)
Brienen, Roel (4)
Camargo, José Luís (4)
Campelo, Wegliane (4)
Cano, Angela (4)
Cárdenas, Sasha (4)
Carrero Márquez, Yrm ... (4)
Castellanos, Hernán (4)
Castilho, Carolina V ... (4)
Cerón, Carlos (4)
Chave, Jerome (4)
Comiskey, James A. (4)
Correa, Diego F. (4)
Costa, Flávia R.C. (4)
Dallmeier, Francisco (4)
Dávila Doza, Hilda P ... (4)
Demarchi, Layon O. (4)
Malhi, Yadvinder (3)
Aronsson, Patrik, 19 ... (3)
Holmgren, Milena (3)
Feeley, Kenneth J. (3)
Huamantupa-Chuquimac ... (3)
Rivas-Torres, Gonzal ... (3)
Farfan-Rios, William (3)
Cárdenas López, Dair ... (3)
Casas, Luisa Fernand ... (3)
Cornejo Valverde, Fe ... (3)
Dávila, Nállarett (3)
visa färre...
Lärosäte
Göteborgs universitet (8)
Stockholms universitet (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy