SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Weerd Hendrik A.) "

Sökning: WFRF:(de Weerd Hendrik A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johansson, Lennart F., et al. (författare)
  • NIPTeR : an R package for fast and accurate trisomy prediction in non-invasive prenatal testing
  • 2018
  • Ingår i: BMC Bioinformatics. - : BioMed Central. - 1471-2105. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Various algorithms have been developed to predict fetal trisomies using cell-free DNA in non-invasive prenatal testing (NIPT). As basis for prediction, a control group of non-trisomy samples is needed. Prediction accuracy is dependent on the characteristics of this group and can be improved by reducing variability between samples and by ensuring the control group is representative for the sample analyzed.RESULTS: NIPTeR is an open-source R Package that enables fast NIPT analysis and simple but flexible workflow creation, including variation reduction, trisomy prediction algorithms and quality control. This broad range of functions allows users to account for variability in NIPT data, calculate control group statistics and predict the presence of trisomies.CONCLUSION: NIPTeR supports laboratories processing next-generation sequencing data for NIPT in assessing data quality and determining whether a fetal trisomy is present. NIPTeR is available under the GNU LGPL v3 license and can be freely downloaded from https://github.com/molgenis/NIPTeR or CRAN.
  •  
2.
  • Smid, Marcel, et al. (författare)
  • The circular RNome of primary breast cancer
  • 2019
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 29:3, s. 356-366
  • Tidskriftsartikel (refereegranskat)abstract
    • Circular RNAs (circRNAs) are a class of RNAs that is under increasing scrutiny, although their functional roles are debated. We analyzed RNA-seq data of 348 primary breast cancers and developed a method to identify circRNAs that does not rely on unmapped reads or known splice junctions. We identified 95,843 circRNAs, of which 20,441 were found recurrently. Of the circRNAs that match exon boundaries of the same gene, 668 showed a poor or even negative (R <0.2) correlation with the expression level of the linear gene. In silico analysis showed only a minority (8.5%) of circRNAs could be explained by known splicing events. Both these observations suggest that specific regulatory processes for circRNAs exist. We confirmed the presence of circRNAs of CNOT2, CREBBP, and RERE in an independent pool of primary breast cancers. We identified circRNA profiles associated with subgroups of breast cancers and with biological and clinical features, such as amount of tumor lymphocytic infiltrate and proliferation index. siRNA-mediated knockdown of circCNOT2 was shown to significantly reduce viability of the breast cancer cell lines MCF-7 and BT-474, further underlining the biological relevance of circRNAs. Furthermore, we found that circular, and not linear, CNOT2 levels are predictive for progression-free survival time to aromatase inhibitor (AI) therapy in advanced breast cancer patients, and found that circCNOT2 is detectable in cell-free RNA from plasma. We showed that circRNAs are abundantly present, show characteristics of being specifically regulated, are associated with clinical and biological properties, and thus are relevant in breast cancer.
  •  
3.
  • Badam, Tejaswi V. S., et al. (författare)
  • A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis
  • 2021
  • Ingår i: BMC Genomics. - : BioMed Central. - 1471-2164. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules. Result: We assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module were differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10− 47) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS. Conclusions: We believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omic approaches for complex diseases. 
  •  
4.
  • de Weerd, Hendrik A., et al. (författare)
  • MODalyseR—a novel software for inference of disease module hub regulators identified a putative multiple sclerosis regulator supported by independent eQTL data
  • 2022
  • Ingår i: Bioinformatics Advances. - : Oxford University Press. - 2635-0041. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • MotivationNetwork-based disease modules have proven to be a powerful concept for extracting knowledge about disease mechanisms, predicting for example disease risk factors and side effects of treatments. Plenty of tools exist for the purpose of module inference, but less effort has been put on simultaneously utilizing knowledge about regulatory mechanisms for predicting disease module hub regulators.ResultsWe developed MODalyseR, a novel software for identifying disease module regulators and reducing modules to the most disease-associated genes. This pipeline integrates and extends previously published software packages MODifieR and ComHub and hereby provides a user-friendly network medicine framework combining the concepts of disease modules and hub regulators for precise disease gene identification from transcriptomics data. To demonstrate the usability of the tool, we designed a case study for multiple sclerosis that revealed IKZF1 as a promising hub regulator, which was supported by independent ChIP-seq data.Availability and implementationMODalyseR is available as a Docker image at https://hub.docker.com/r/ddeweerd/modalyser with user guide and installation instructions found at https://gustafsson-lab.gitlab.io/MODalyseR/.Supplementary informationSupplementary data are available at Bioinformatics Advances online.
  •  
5.
  • de Weerd, Hendrik A., et al. (författare)
  • MODifieR : an ensemble R package for inference of disease modules from transcriptomics networks
  • 2020
  • Ingår i: Bioinformatics. - : Oxford University Press. - 1367-4803 .- 1367-4811 .- 1460-2059. ; 36:12, s. 3918-3919
  • Tidskriftsartikel (refereegranskat)abstract
    • MOTIVATION: Complex diseases are due to the dense interactions of many disease-associated factors that dysregulate genes that in turn form so-called disease modules, which have shown to be a powerful concept for understanding pathological mechanisms. There exist many disease module inference methods that rely on somewhat different assumptions, but there is still no gold standard or best performing method. Hence, there is a need for combining these methods to generate robust disease modules.RESULTS: We developed MODule IdentiFIER (MODifieR), an ensemble R package of nine disease module inference methods from transcriptomics networks. MODifieR uses standardized input and output allowing the possibility to combine individual modules generated from these methods into more robust disease-specific modules, contributing to a better understanding of complex diseases.AVAILABILITY: MODifieR is available under the GNU GPL license and can be freely downloaded from https://gitlab.com/Gustafsson-lab/MODifieR and as a Docker image from https://hub.docker.com/r/ddeweerd/modifier.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy