SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(dos Santos Renato Batista) "

Sökning: WFRF:(dos Santos Renato Batista)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alves Machado Filho, Manoel, et al. (författare)
  • Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations
  • 2023
  • Ingår i: ACS Nanoscience Au. - : American Chemical Society (ACS). - 2694-2496. ; 3:1, s. 84-93
  • Tidskriftsartikel (refereegranskat)abstract
    • By addressing precursor prevalence and energetics using the DFT-based synthetic growth concept (SGC), the formation mechanism of self-induced InAlN core–shell nanorods (NRs) synthesized by reactive magnetron sputter epitaxy (MSE) is explored. The characteristics of In- and Al-containing precursor species are evaluated considering the thermal conditions at a typical NR growth temperature of around 700 °C. The cohesive and dissociation energies of In-containing precursors are consistently lower than those of their Al-containing counterparts, indicating that In-containing precursors are more weakly bonded and more prone to dissociation. Therefore, In-containing species are expected to exhibit lower abundance in the NR growth environment. At increased growth temperatures, the depletion of In-based precursors is even more pronounced. A distinctive imbalance in the incorporation of Al- and In-containing precursor species (namely, AlN/AlN+, AlN2/AlN2+, Al2N2/Al2N2+, and Al2/Al2+ vs InN/InN+, InN2/InN2+, In2N2/In2N2+, and In2/In2+) is found at the growing edge of the NR side surfaces, which correlates well with the experimentally obtained core–shell structure as well as with the distinctive In-rich core and vice versa for the Al-rich shell. The performed modeling indicates that the formation of the core–shell structure is substantially driven by the precursors’ abundance and their preferential bonding onto the growing edge of the nanoclusters/islands initiated by phase separation from the beginning of the NR growth. The cohesive energies and the band gaps of the NRs show decreasing trends with an increment in the In concentration of the NRs’ core and with an increment in the overall thickness (diameter) of the NRs. These results reveal the energy and electronic reasons behind the limited growth (up to ∼25% of In atoms of all metal atoms, i.e., InxAl1–xN, x ∼ 0.25) in the NR core and may be qualitatively perceived as a limiting factor for the thickness of the grown NRs (typically <50 nm).
  •  
2.
  • Batista dos Santos, Renato, et al. (författare)
  • Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 121:46, s. 26125-26132
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose hybrid molecular systems containing small carbon atomic chains interconnected by graphene-like flakes, theoretically predicted as true energy minima, as low-dimensional structures that may be useful in electronic devices at the limit of the atomic miniaturization. The effects of an external electric field applied along the direction of the carbon chains indicate that it is possible to control energy gap and spin polarization with sufficiently high strength, within the limit of the structural restoring of the systems. In this sense, by applying electric fields with magnitudes in the 1-5 V/nm range, we obtain semiconductor-to-metallic transitions for all odd-numbered carbon-chain systems proposed here. Furthermore, high-spin-to-low-spin transitions are determined for these systems as a function of the electric-field magnitude. In the case of the even-numbered carbon-chain systems, the overall electric field effect is pushing electron density near the Fermi level, leading to a gapless or metallic regime at 3.0 V/nm. An electric-field control of the spin-polarization of these latter systems is only achieved by doping the extremities of the graphene-like terminations with sulfur atoms. This finding, however, is beneficial for applications of these systems in spin controlled carbon-based devices connected by gold electrodes, even in the presence of a weak spin-orbit coupling.
  •  
3.
  • dos Santos, Renato Batista, et al. (författare)
  • Exploring 2D structures of indium oxide of different stoichiometry
  • 2021
  • Ingår i: CrystEngComm. - : Royal Society of Chemistry. - 1466-8033. ; 23:38, s. 6661-6667
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of specific and outstanding 2D-structure-related material performance has motivated a search for 2D atomic structures that can even be described as non-van-der-Waals-type materials. This has been exemplified with materials from group IV and group III-V which naturally crystallize in diamond, zincblende or wurtzite crystal structures. Here, we give insight into various atomic structures of indium oxide at the 2D limit featuring different stoichiometry, including 2D InO and 2D In2O3. We find that 2D InO with an InSe-type structure and its characteristic In-In distances compare closely with available first-time experimental results. An as yet unexplored 2D structure of indium oxide is found to be a planar hexagonal monolayer of h-In2O3.
  •  
4.
  •  
5.
  • Machado Filho, Manoel Alves, et al. (författare)
  • Density Functional Theory-Fed Phase Field Model for Semiconductor Nanostructures: The Case of Self-Induced Core-Shell InAlN Nanorods
  • 2024
  • Ingår i: Crystal Growth & Design. - : AMER CHEMICAL SOC. - 1528-7483 .- 1528-7505.
  • Tidskriftsartikel (refereegranskat)abstract
    • The self-induced formation of core-shell InAlN nanorods (NRs) is addressed at the mesoscopic scale by density functional theory (DFT)-resulting parameters to develop phase field modeling (PFM). Accounting for the structural, bonding, and electronic features of immiscible semiconductor systems at the nanometer scale, we advance DFT-based procedures for computation of the parameters necessary for PFM simulation runs, namely, interfacial energies and diffusion coefficients. The developed DFT procedures conform to experimental self-induced InAlN NRs' concerning phase-separation, core/shell interface, morphology, and composition. Finally, we infer the prospects for the transferability of the coupled DFT-PFM simulation approach to a wider range of nanostructured semiconductor materials.
  •  
6.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy