SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(ten Brummelaar T. A.) "

Sökning: WFRF:(ten Brummelaar T. A.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boyajian, T., et al. (författare)
  • Stellar diameters and temperatures - VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 447:1, s. 846-857
  • Tidskriftsartikel (refereegranskat)abstract
    • We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be thetaLD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (Teff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R* = 0.805 +/- 0.016, 1.203 +/- 0.061 Rsun), mean stellar densities (rho* = 1.62 +/- 0.11, 0.58 +/- 0.14 rhosun), planetary radii (Rp = 1.216 +/- 0.024, 1.451 +/- 0.074 RJup), and mean planetary densities (rhop = 0.605 +/- 0.029, 0.196 +/- 0.033 rhoJup) for HD 189733 b and HD 209458 b, respectively. The stellar parameters for HD 209458, a F9 dwarf, are consistent with indirect estimates derived from spectroscopic and evolutionary modeling. However, we find that models are unable to reproduce the observational results for the K2 dwarf, HD 189733. We show that, for stellar evolutionary models to match the observed stellar properties of HD 189733, adjustments lowering the solar-calibrated mixing length parameter from 1.83 to 1.34 need to be employed.
  •  
2.
  • Creevey, O. L., et al. (författare)
  • Fundamental properties of the Population II fiducial stars HD 122563 and Gmb 1830 from CHARA interferometric observations
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. A17-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have determined the angular diameters of two metal-poor stars, HD 122563 and Gmb 1830, using CHARA and Palomar Testbed Interferometer observations. For the giant star HD 122563, we derive an angular diameter theta(3D) = 0.940 +/- 0.011 milliarcseconds (mas) using limb-darkening from 3D convection simulations and for the dwarf star Gmb 1830 (HD 103095) we obtain a 1D limb-darkened angular diameter theta(1D) = 0.679 +/- 0.007 mas. Coupling the angular diameters with photometry yields effective temperatures with precisions better than 55 K (T-eff = 4598 +/- 41 K and 4818 +/- 54 K - for the giant and the dwarf star, respectively). Including their distances results in very well-determined luminosities and radii (L = 230 +/- 7 L-circle dot, R = 24.1 +/- 1.1 R-circle dot and L = 0.213 +/- 0.002 L-circle dot, R = 0.665 +/- 0.014 R-circle dot, respectively). We used the CESAM2k stellar structure and evolution code in order to produce models that fit the observational data. We found values of the mixing-length parameter alpha (which describes 1D convection) that depend on the mass of the star. The masses were determined from the models with precisions of < 3% and with the well-measured radii excellent constraints on the surface gravity are obtained (log g = 1.60 +/- 0.04, 4.59 +/- 0.02 dex, respectively). The very small errors on both log g and T-eff provide stringent constraints for spectroscopic analyses given the sensitivity of abundances to both of these values. The precise determination of T-eff for the two stars brings into question the photometric scales for metal-poor stars.
  •  
3.
  • Creevey, O. L., et al. (författare)
  • Benchmark stars for Gaia Fundamental properties of the Population II star HD 140283 from interferometric, spectroscopic, and photometric data
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 575
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-poor halo stars are important astrophysical laboratories that allow us to unravel details about many aspects of astrophysics, including the chemical conditions at the formation of our Galaxy, understanding the processes of diffusion in stellar interiors, and determining precise effective temperatures and calibration of colour-effective temperature relations. To address any of these issues the fundamental properties of the stars must first be determined. HD140283 is the closest and brightest metal-poor Population II halo star (distance = 58 pc and V = 7.21), an ideal target that allows us to approach these questions, and one of a list of 34 benchmark stars defined for Gaia astrophysical parameter calibration. In the framework of characterizing these benchmark stars, we determined the fundamental properties of HD140283 (radius, mass, age, and effective temperature) by obtaining new interferometric and spectroscopic measurements and combining them with photometry from the literature. The interferometric measurements were obtained using the visible interferometer VEGA on the CHARA array and we determined a 1D limb-darkened angular diameter of theta(1D) = 0.353 +/- 0.013 milliarcsec. Using photometry from the literature we derived the bolometric flux in two ways: a zero reddening solution (A(V) = 0.0 mag) of F-bol of 3.890 +/- 0.066 x 10(-8) erg s(-1) cm(-2),and a maximum of A(V) = 0.1 mag solution of 4.220 +/- 0.067 x 10(-8) erg s(-1) cm(-2). The interferometric T-eff is thus between 5534 +/- 103 K and 5647 +/- 105 K and its radius is R = 2.21 +/- 0.08 R-circle dot. Spectroscopic measurements of HD140283 were obtained using HARPS, NARVAL, and UVES and a 1D LTE analysis of Ha line wings yielded T-effspec = 5626 +/- 75 K. Using fine-tuned stellar models including diffusion of elements we then determined the mass M and age t of HD140283. Once the metallicity has been fixed, the age of the star depends on M, initial helium abundance Y-i, and mixing-length parameter alpha, only two of which are independent. We derive simple equations to estimate one from the other two. We need to adjust a to much lower values than the solar one (similar to 2) in order to fit the observations, and if A(V) = 0.0 mag then 0.5 <= alpha <= 1. We give an equation to estimate t from M, Y-i (alpha), and A(V). Establishing a reference alpha = 1.00 and adopting Y-i = 0.245 we derive a mass and age of HD140283: M = 0.780 +/- 0.010 M-circle dot and t = 13.7 +/- 0.7 Gyr (A(V) = 0.0 mag), or M = 0.805 +/- 0.010 M-circle dot and t = 12.2 +/- 0.6 Gyr (A(V) = 0.1 mag). Our stellar models yield an initial (interior) metal-hydrogen mass fraction of [Z/X](i) = -1.70 and log g = 3.65 +/- 0.03. Theoretical advances allowing us to impose the mixing-length parameter would greatly improve the redundancy between M, Y-i, and age, while from an observational point of view, accurate determinations of extinction along with asteroseismic observations would provide critical information allowing us to overcome the current limitations in our results.
  •  
4.
  • Kervella, P., et al. (författare)
  • The radii of the nearby K5V and K7V stars 61 Cygni A & B - CHARA/FLUOR interferometry and CESAM2k modeling
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 488:2, s. 667-674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The main sequence binary star 61 Cyg ( K5V+ K7V) is our nearest stellar neighbour in the northern hemisphere. This proximity makes it a particularly well suited system for very high accuracy interferometric radius measurements. Aims. Our goal is to constrain the poorly known evolutionary status and age of this bright binary star. Methods. We obtained high accuracy interferometric observations in the infrared K' band, using the CHARA/ FLUOR instrument. We then computed evolutionary models of 61 Cyg A & B with the CESAM2k code. As model constraints, we used a combination of observational parameters from classical observation methods (photometry, spectroscopy) as well as our new interferometric radii. Results. The measured limb darkened disk angular diameters are.LD( A) = 1.775 +/- 0.013 mas and.LD( B) = 1.581 +/- 0.022 mas, respectively for 61 Cyg A and B. Considering the high accuracy parallaxes available, these values translate into photospheric radii of R(A) = 0.665 +/- 0.005 R-circle dot and R(B) = 0.595 +/- 0.008 R-circle dot. The new radii constrain e. ciently the physical parameters adopted for the modeling of both stars, allowing us to predict asteroseismic frequencies based on our best- fit models. Conclusions. The CESAM2k evolutionary models indicate an age around 6 Gyr and are compatible with small values of the mixing length parameter. The measurement of asteroseismic oscillation frequencies in 61 Cyg A & B would be of great value to improve the modeling of this important fiducial stellar system, in particular to better constrain the masses.
  •  
5.
  • Chiavassa, A., et al. (författare)
  • Optical interferometry and Gaia measurement uncertainties reveal the physics of asymptotic giant branch stars
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Asymptotic giant branch (AGB) stars are cool luminous evolved stars that are well observable across the Galaxy and populating Gaia data. They have complex stellar surface dynamics, which amplifies the uncertainties on stellar parameters and distances.Aims. On the AGB star CL Lac, it has been shown that the convection-related variability accounts for a substantial part of the Gaia DR2 parallax error. We observed this star with the MIRC-X beam combiner installed at the CHARA interferometer to detect the presence of stellar surface inhomogeneities.Methods. We performed the reconstruction of aperture synthesis images from the interferometric observations at different wavelengths. Then, we used 3D radiative hydrodynamics (RHD) simulations of stellar convection with CO5BOLD and the post-processing radiative transfer code OPTIM3D to compute intensity maps in the spectral channels of MIRC-X observations. Then, we determined the stellar radius using the average 3D intensity profile and, finally, compared the 3D synthetic maps to the reconstructed ones focusing on matching the intensity contrast, the morphology of stellar surface structures, and the photocentre position at two different spectral channels, 1.52 and 1.70 mu m, simultaneously.Results. We measured the apparent diameter of CL Lac at two wavelengths (3.299 0.005 mas and 3.053 +/- 0.006 mas at 1.52 and 1.70 mu m, respectively) and recovered the radius (R = 307 +/- 41 and R = 284 +/- 38 R-circle dot) using a Gaia parallax. In addition to this, the reconstructed images are characterised by the presence of a brighter area that largely affects the position of the photocentre. The comparison with 3D simulation shows good agreement with the observations both in terms of contrast and surface structure morphology, meaning that our model is adequate for explaining the observed inhomogenities.Conclusions. This work confirms the presence of convection-related surface structures on an AGB star of Gaia DR2. Our result will help us to take a step forward in exploiting Gaia measurement uncertainties to extract the fundamental properties of AGB stars using appropriate RHD simulations.
  •  
6.
  • Hummel, C. A., et al. (författare)
  • Orbital Elements and Stellar Parameters of the Active Binary UX Arietis
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 844:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 +/- 0.8 pc) and stellar masses (M-P = 1.30 +/- 0.06 M-circle dot, M-S = 1.14 +/- 0.06 M-circle dot). The radius of the primary can be determined to be R-P = 5.6 +/- 0.1 R-circle dot and that of the secondary to be R-S = 1.6 +/- 0.2 R-circle dot. The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy