SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Dijk Jacintha G. B.) "

Sökning: WFRF:(van Dijk Jacintha G. B.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wortel, Meike T., et al. (författare)
  • Towards evolutionary predictions : current promises and challenges
  • 2023
  • Ingår i: Evolutionary Applications. - : John Wiley & Sons. - 1752-4571. ; 16:1, s. 3-21
  • Forskningsöversikt (refereegranskat)abstract
    • Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.
  •  
2.
  • Lisovski, Simeon, et al. (författare)
  • The roles of migratory and resident birds in local avian influenza infection dynamics
  • 2018
  • Ingår i: Journal of Applied Ecology. - : Wiley-Blackwell. - 0021-8901 .- 1365-2664. ; 55:6, s. 2963-2975
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Migratory birds are an increasing focus of interest when it comes to infection dynamics and the spread of avian influenza viruses (AIV). However, we lack detailed understanding of migratory birds' contribution to local AIV prevalence levels and their downstream socio-economic costs and threats. 2. To explain the potential differential roles of migratory and resident birds in local AIV infection dynamics, we used a susceptible-infectious-recovered (SIR) model. We investigated five (mutually non- exclusive) mechanisms potentially driving observed prevalence patterns: (1) a pronounced birth pulse (e.g. the synchronised annual influx of immunologically naive individuals), (2) short-term immunity, (3) increase in susceptible migrants, (4) differential susceptibility to infection (i.e. transmission rate) for migrants and residents, and (5) replacement of migrants during peak migration. 3. SIR models describing all possible combinations of the five mechanisms were fitted to individual AIV infection data from a detailed longitudinal surveillance study in the partially migratory mallard duck (Anas platyrhynchos). During autumn and winter, the local resident mallard community also held migratory mallards that exhibited distinct AIV infection dynamics. 4. Replacement of migratory birds during peak migration in autumn was found to be the most important mechanism driving the variation in local AIV infection patterns. This suggests that a constant influx of migratory birds, likely immunological naive to locally circulating AIV strains, is required to predict the observed temporal prevalence patterns and the distinct differences in prevalence between residents and migrants. 5. Synthesis and applications. Our analysis reveals a key mechanism that could explain the amplifying role of migratory birds in local avian influenza virus infection dynamics; the constant flow and replacement of migratory birds during peak migration. Apart from monitoring efforts, in order to achieve adequate disease management and control in wildlife-with knock-on effects for livestock and humans,-we conclude that it is crucial, in future surveillance studies, to record host demographical parameters such as population density, timing of birth and turnover of migrants.
  •  
3.
  • van Dijk, Jacintha G. B., et al. (författare)
  • A Comparative Study of the Innate Humoral Immune Response to Avian Influenza Virus in Wild and Domestic Mallards
  • 2020
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 11, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestic mallards (Anas platyrhynchos domesticus) are traditionally used as a model to investigate infection dynamics and immune responses to low pathogenic avian influenza viruses (LPAIVs) in free-living mallards. However, it is unclear whether the immune response of domestic birds reflects the response of their free-living counterparts naturally exposed to these viruses. We investigated the extent to which the innate humoral immune response was similar among (i) wild-type domestic mallards in primary and secondary infection with LPAIV H4N6 in a laboratory setting (laboratory mallards), (ii) wild-type domestic mallards naturally exposed to LPAIVs in a semi-natural setting (sentinel mallards), and (iii) free-living mallards naturally exposed to LPAIVs. We quantified innate humoral immune function by measuring non-specific natural antibodies (agglutination), complement activity (lysis), and the acute phase protein haptoglobin. We demonstrate that complement activity in the first 3 days after LPAIV exposure was higher in primary-exposed laboratory mallards than in sentinel and free-living mallards. LPAIV H4N6 likely activated the complement system and the acute phase response in primary-exposed laboratory mallards, as lysis was higher and haptoglobin lower at day 3 and 7 post-exposure compared to baseline immune function measured prior to exposure. There were no differences observed in natural antibody and haptoglobin concentrations among laboratory, sentinel, and free-living mallards in the first 3 days after LPAIV exposure. Our study demonstrates that, based on the three innate humoral immune parameters measured, domestic mallards seem an appropriate model to investigate innate immunology of their free-living counterparts, albeit the innate immune response of secondary-LPAIV exposed mallards is a better proxy for the innate immune response in pre-exposed free-living mallards than that of immunologically naive mallards.
  •  
4.
  • van Dijk, Jacintha G. B., et al. (författare)
  • Herd immunity drives the epidemic fadeout of avian cholera in Arctic-nesting seabirds
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Avian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population.
  •  
5.
  • van Dijk, Jacintha G. B., et al. (författare)
  • Host and virus ecology as determinants of influenza A virus transmission in wild birds
  • 2018
  • Ingår i: Current Opinion in Virology. - : Elsevier. - 1879-6257 .- 1879-6265. ; 28, s. 26-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Low pathogenic influenza A virus (LPIAV) prevalence and subtype distribution differs between and across bird taxa. A crucial factor in the epidemiology of these viruses and virus subtypes is the ability to transmit between and within different host taxa and individuals. Successful viral transmission depends on availability of susceptible hosts and exposure of host to virus. Exposure to viruses and susceptibility to virus infection and/or disease are shaped by both host and virus traits. In this review we have identified key host and virus traits that can affect LPIAV transmission, both in terms of exposure and susceptibility. Furthermore we highlight current challenges in assessment of these traits and identify methodological considerations for future studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy