SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Dishoeck Ewine F.) "

Sökning: WFRF:(van Dishoeck Ewine F.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zannese, Marion, et al. (författare)
  • OH as a probe of the warm-water cycle in planet-forming disks
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366. ; 8:5, s. 577-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Water is a key ingredient for the emergence of life as we know it. Yet, its destruction and reformation in space remain unprobed in warm gas (T > 300 K). Here we detect with the James Webb Space Telescope the emission of the hydroxyl radical (OH) from d203-506, a planet-forming disk exposed to external far-ultraviolet (FUV) radiation. These observations were made as part of the Early Release Science programme PDRs4All, which is focused on the Orion bar. The observed OH spectrum is compared with the results of quantum dynamical calculations to reveal two essential molecular processes. The highly excited rotational lines of OH in the mid-infrared are telltale signs of H2O destruction by FUV radiation. The OH rovibrational lines in the near-infrared are attributed to chemical excitation by the key reaction O + H-2 -> OH + H, which seeds the formation of water in the gas phase. These results show that under warm and irradiated conditions, water is destroyed and efficiently reformed through gas-phase reactions. We infer that, in this source, the equivalent of Earth oceans' worth of water is destroyed per month and replenished. This warm-water cycle could reprocess some water inherited from cold interstellar clouds and explain the lower deuterium fraction of water in Earth's oceans compared with that found around protostars.
  •  
2.
  • Grant, Sierra L., et al. (författare)
  • MINDS. The Detection of 13 CO 2 with JWST-MIRI Indicates Abundant CO 2 in a Protoplanetary Disk
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 947:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present JWST-MIRI Medium Resolution Spectrometer (MRS) spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey Guaranteed Time Observations program. Emission from 12CO213CO2, H2O, HCN, C2H2, and OH is identified with 13CO2 being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few astronomical units of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The Q branches of these molecules, including those of hot bands, are particularly sensitive to temperature and column density. We find that the 12CO2 emission in the GW Lup disk is coming from optically thick emission at a temperature of ∼400 K. 13CO2 is optically thinner and based on a lower temperature of ∼325 K, and thus may be tracing deeper into the disk and/or a larger emitting radius than 12CO2. The derived N CO 2 / N H 2 O ratio is orders of magnitude higher than previously derived for GW Lup and other targets based on Spitzer-InfraRed-Spectrograph data. This high column density ratio may be due to an inner cavity with a radius in between the H2O and CO2 snowlines and/or an overall lower disk temperature. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.
  •  
3.
  • Tobin, John J., et al. (författare)
  • The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class i Protostellar Disks
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/submillimeter Array at 0.87 mm at a resolution of ∼0.″1 (40 au), including observations with the Very Large Array at 9 mm toward 148 protostars at a resolution of ∼0.″08 (32 au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9 mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are 44.9-3.4+5.8, 37.0-3.0+4.9, and 28.5-2.3+3.7 au, respectively, and the mean protostellar dust disk masses are 25.9-4.0+7.7, 14.9-2.2+3.8, 11.6-1.9+3.5 M⊙, respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87 mm continuum sources plus 42 nondetections) have disk radii greater than 50 au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.
  •  
4.
  • Dyrek, Achrène, et al. (författare)
  • SO2, silicate clouds, but no CH4 detected in a warm Neptune
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625, s. 51-54
  • Tidskriftsartikel (refereegranskat)abstract
    • WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M⊕ and Jupiter-like radius of about 0.94 RJ (refs. 1,2), whose extended atmosphere is eroding3. Previous observations showed evidence for water vapour and a thick, high-altitude condensate layer in the atmosphere of WASP-107b (refs. 4,5). Recently, photochemically produced sulfur dioxide (SO2) was detected in the atmosphere of a hot (about 1,200 K) Saturn-mass planet from transmission spectroscopy near 4.05 μm (refs. 6,7), but for temperatures below about 1,000 K, sulfur is predicted to preferably form sulfur allotropes instead of SO2 (refs. 8,9,10). Here we report the 9σ detection of two fundamental vibration bands of SO2, at 7.35 μm and 8.69 μm, in the transmission spectrum of WASP-107b using the Mid-Infrared Instrument (MIRI) of JWST. This discovery establishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending the temperature range of exoplanets exhibiting detected photochemistry from about 1,200 K down to about 740 K. Furthermore, our spectral analysis reveals the presence of silicate clouds, which are strongly favoured (around 7σ) over simpler cloud set-ups. Furthermore, water is detected (around 12σ) but methane is not. These findings provide evidence of disequilibrium chemistry and indicate a dynamically active atmosphere with a super-solar metallicity.
  •  
5.
  • Gasman, Danny, et al. (författare)
  • MINDS Abundant water and varying C/O across the disk of Sz 98 as seen by JWST/MIRI
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Mid-InfraRed Instrument (MIRI) Medium Resolution Spectrometer (MRS) on board the James Webb Space Telescope (JWST) allows us to probe the inner regions of protoplanetary disks, where the elevated temperatures result in an active chemistry and where the gas composition may dictate the composition of planets forming in this region. The disk around the classical T Tauri star Sz 98, which has an unusually large dust disk in the millimetre with a compact core, was observed with the MRS, and we examine its spectrum here.Aims. We aim to explain the observations and put the disk of Sz 98 in context with other disks, with a focus on the H2O emission through both its ro-vibrational and pure rotational emission. Furthermore, we compare our chemical findings with those obtained for the outer disk from Atacama Large Millimeter/submillimeter Array (ALMA) observations.Methods. In order to model the molecular features in the spectrum, the continuum was subtracted and local thermodynamic equilibrium (LTE) slab models were fitted. The spectrum was divided into different wavelength regions corresponding to H2O lines of different excitation conditions, and the slab model fits were performed individually per region.Results. We confidently detect CO, H2O, OH, CO2, and HCN in the emitting layers. Despite the plethora of H2O lines, the isotopo-logue (H2O)-O-18 is not detected. Additionally, no other organics, including C2H2, are detected. This indicates that the C/O ratio could be substantially below unity, in contrast with the outer disk. The H2O emission traces a large radial disk surface region, as evidenced by the gradually changing excitation temperatures and emitting radii. Additionally, the OH and CO2 emission is relatively weak. It is likely that H2O is not significantly photodissociated, either due to self-shielding against the stellar irradiation, or UV shielding from small dust particles. While H2O is prominent and OH is relatively weak, the line fluxes in the inner disk of Sz 98 are not outliers compared to other disks.Conclusions. The relative emitting strength of the different identified molecular features points towards UV shielding of H2O in the inner disk of Sz 98, with a thin layer of OH on top. The majority of the organic molecules are either hidden below the dust continuum, or not present. In general, the inferred composition points to a sub-solar C/O ratio (<0.5) in the inner disk, in contrast with the larger than unity C/O ratio in the gas in the outer disk found with ALMA.
  •  
6.
  • Iani, Edoardo, et al. (författare)
  • MIDIS : JWST NIRCam and MIRI Unveil the Stellar Population Properties of Lyα Emitters and Lyman-break Galaxies at z ≃ 3–7
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 963:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the stellar population properties of 182 spectroscopically confirmed (MUSE/VLT) Lyα emitters (LAEs) and 450 photometrically selected Lyman-break galaxies (LBGs) at z = 2.8–6.7 in the Hubble Extreme Deep Field. Leveraging the combined power of Hubble Space Telescope and JWST NIRCam and MIRI observations, we analyze their rest-frame UV-through-near-IR spectral energy distributions, with MIRI playing a crucial role in robustly assessing the LAEs' stellar masses and ages. Our LAEs are low-mass objects (log10(M⋆/M⊙)≃7.5) with little or no dust extinction (E(B − V) ≃ 0.1) and a blue UV continuum slope (β ≃ −2.2). While 75% of our LAEs are young (<100 Myr), the remaining 25% have significantly older stellar populations (≥100 Myr). These old LAEs are statistically more massive, less extinct, and have lower specific star formation rate than young LAEs. Besides, they populate the plane of M⋆ versus star formation rate along the main sequence of star-forming galaxies, while young LAEs populate the starburst region. The comparison between the LAEs' properties and those of a stellar-mass-matched sample of LBGs shows no statistical difference between these objects, except for the LBGs' redder UV continuum slope and marginally larger E(B − V) values. Interestingly, 48% of the LBGs have ages <10 Myr and are classified as starbursts, but lack detectable Lyα emission. This is likely due to H i resonant scattering and/or dust-selective extinction. Overall, we find that JWST observations are crucial in determining the properties of LAEs and shedding light on their comparison with LBGs.
  •  
7.
  • Kamp, Inga, et al. (författare)
  • The chemical inventory of the inner regions of planet-forming disks - the JWST/MINDS program
  • 2023
  • Ingår i: Faraday discussions. - 1359-6640 .- 1364-5498. ; 245, s. 112-137
  • Tidskriftsartikel (refereegranskat)abstract
    • The understanding of planet formation has changed recently, embracing the new idea of pebble accretion. This means that the influx of pebbles from the outer regions of planet-forming disks to their inner zones could determine the composition of planets and their atmospheres. The solid and molecular components delivered to the planet-forming region can be best characterized by mid-infrared spectroscopy. With Spitzer low-resolution (R = 100, 600) spectroscopy, this approach was limited to the detection of abundant molecules, such as H2O, C2H2, HCN and CO2. This contribution will present the first results of the MINDS (MIRI mid-INfrared Disk Survey, PI:Th Henning) project. Due do the sensitivity and spectral resolution provided by the James Webb Space Telescope (JWST), we now have a unique tool to obtain the full inventory of chemistry in the inner disks of solar-type stars and brown dwarfs, including also less-abundant hydrocarbons and isotopologues. The Integral Field Unit (IFU) capabilities will enable at the same time spatial studies of the continuum and line emission in extended sources such as debris disks, the flying saucer and also the search for mid-IR signatures of forming planets in systems such as PDS 70. These JWST observations are complementary to ALMA and NOEMA observations of outer-disk chemistry; together these datasets will provide an integral view of the processes occurring during the planet-formation phase.
  •  
8.
  • Schwarz, Kamber R., et al. (författare)
  • MINDS. JWST/MIRI Reveals a Dynamic Gas-rich Inner Disk inside the Cavity of SY Cha
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 962:1
  • Tidskriftsartikel (refereegranskat)abstract
    • SY Cha is a T Tauri star surrounded by a protoplanetary disk with a large cavity seen in the millimeter continuum but has the spectral energy distribution of a full disk. Here we report the first results from JWST/Mid-InfraRed Instrument (MIRI) Medium Resolution Spectrometer (MRS) observations taken as part of the MIRI mid-INfrared Disk Survey (MINDS) GTO Program. The much improved resolution and sensitivity of MIRI-MRS compared to Spitzer enables a robust analysis of the previously detected H2O, CO, HCN, and CO2 emission as well as a marginal detection of C2H2. We also report the first robust detection of mid-infrared OH and rovibrational CO emission in this source. The derived molecular column densities reveal the inner disk of SY Cha to be rich in both oxygen- and carbon-bearing molecules. This is in contrast to PDS 70, another protoplanetary disk with a large cavity observed with JWST, which displays much weaker line emission. In the SY Cha disk, the continuum, and potentially the line, flux varies substantially between the new JWST observations and archival Spitzer observations, indicative of a highly dynamic inner disk.
  •  
9.
  • Tobin, J. J., et al. (författare)
  • Deuterium-enriched water ties planet-forming disks to comets and protostars
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 615:7951, s. 227-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Water is a fundamental molecule in the star and planet formation process, essential for catalysing the growth of solid material and the formation of planetesimals within disks1,2. However, the water snowline and the HDO:H2O ratio within proto-planetary disks have not been well characterized because water only sublimates at roughly 160 K (ref. 3), meaning that most water is frozen out onto dust grains and that the water snowline radii are less than 10 AU (astronomical units)4,5. The sun-like protostar V883 Ori (M* = 1.3 M⊙)6 is undergoing an accretion burst7, increasing its luminosity to roughly 200 L⊙ (ref. 8), and previous observations suggested that its water snowline is 40-120 AU in radius6,9,10. Here we report the direct detection of gas phase water (HDO and [Formula: see text]) from the disk of V883 Ori. We measure a midplane water snowline radius of approximately 80 AU, comparable to the scale of the Kuiper Belt, and detect water out to a radius of roughly 160 AU. We then measure the HDO:H2O ratio of the disk to be (2.26 ± 0.63) × 10-3. This ratio is comparable to those of protostellar envelopes and comets, and exceeds that of Earth's oceans by 3.1σ. We conclude that disks directly inherit water from the star-forming cloud and this water becomes incorporated into large icy bodies, such as comets, without substantial chemical alteration.
  •  
10.
  • van 't Hoff, Merel L. R., et al. (författare)
  • Imaging the water snowline in a protostellar envelope with (HCO+)-C-13
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most important snowline, that of water, is very difficult to observe directly in protoplanetary disks because of the close proximity of this snowline to the central star. Aims. Based on chemical considerations, HCO+ is predicted to be a good chemical tracer of the water snowline because it is particularly abundant in dense clouds when water is frozen out. This work aims to map the optically thin isotopolog (HCO+)-C-13 toward the envelope of the low-mass protostar NGC1333-IRAS2A, where the snowline is at a greater distance from the star than in disks. Comparison with previous observations of (H2O)-O-18 show whether (HCO+)-C-13 is indeed a good tracer of the water snwline. Methods. NGC1333-IRAS2A was observed using the NOrthern Extended Millimeter Array (NOEMA) at similar to 0:0.9 resolution, targeting the (HCO+)-C-13 J = 3-2 transition at 260.255 GHz. The integrated emission profile was analyzed using 1D radiative transfer modeling of a spherical envelope with a parametrized abundance profile for (HCO+)-C-13. This profile was validated with a full chemical model. Results. The (HCO+)-C-13 emission peaks similar to 2" northeast of the continuum peak, whereas (H2O)-O-18 sh ows compact emission on source. Quantitative modeling shows that a decrease in (HCO+)-C-13 abundance by at least a factor of six is needed in the inner similar to 360 AU to reproduce the observed emission profile. Chemical modeling indeed predicts a steep increase in HCO+ just outside the water snowline; the 50% decrease in gaseous H2O at the snowline is not enough to allow HCO+ to be abundant. This places the water snowline at 225 AU, further away from the star than expected based on the 1D envelope temperature structure for NGC1333-IRAS2A. In contrast, DCO+ observations show that the CO snowline is at the expected location, making an outburst scenario unlikely. Conclusions. The spatial anticorrelation of (HCO+)-C-13 and (H2O)-O-18 emission provide proof of concept that (HCO+)-C-13 can be used as a tracer of the water snowline.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy