SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Eyken A P) "

Sökning: WFRF:(van Eyken A P)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lockwood, M, et al. (författare)
  • Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF : relation to reconnection pulses and FTE signatures
  • 2001
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:10-12, s. 1613-1640
  • Forskningsöversikt (refereegranskat)abstract
    • We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Ogawa, Y., et al. (författare)
  • Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:5, s. A05305-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated how geomagnetic activity, the solar wind (SW), and the interplanetary magnetic field (IMF) influence the occurrence of the F-region/topside ionospheric ion upflow and downflow. Occurrence of dayside ion upflow observed with the European Incoherent Scatter Svalbard radar (ESR) at 75.2 degrees magnetic latitude is highly correlated with the SW density, as well as with the strength of the IMF By component. We suggest that this correlation exists because the region where ion upflow occurs is enlarged owing to SW density and IMF By magnitude, but it does not move significantly in geomagnetic latitude. The occurrence frequency of dayside ion upflow displays peaks versus the geomagnetic activity index (Kp), SW velocity, and negative IMF Bz component; that is, ion upflow is less frequently seen at the highest values of these parameters. Dayside ion downflow in the F-region/topside ionosphere occurs only when the Kp index and/or SW velocity are high or when IMF Bz is largely negative. The ion downflow is likely due to ballistic return of the ion upflow. We suggest that the region of ion upflow not only becomes larger but also moves equatorward with increasing Kp, SW velocity, and negative IMF Bz. The ESR can so be poleward of the upflow region and observe ions convecting poleward and returning ballistically downward.
  •  
6.
  • Ogawa, Y., et al. (författare)
  • On the source of the polar wind in the polar topside ionosphere : First results from the EISCAT Svalbard radar
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36:24, s. L24103-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present quantitative radar observations of both hydrogen ion (H+) and oxygen ion (O+) upflow in the topside polar ionosphere using measurements that were recently carried out with the EISCAT Svalbard Radar and the Reimei satellite. H+ upflow was clearly observed equatorward of the cusp above 500 km altitude. Within the cusp the H+ density was very low, and the upflow was dominated by O+ ions, but on closed field lines the H+ became the larger contributor to the upward flux above about 550 km. The total flux seemed to be conserved, and so below 550 km altitude O+ (with a small upward velocity of similar to 50 m s(-1)) appeared to determine the upward flux which was then maintained by H+! in the topside ionosphere. We also found that the H+ density in the topside polar ionosphere was several times higher than current predictions of ionospheric models like IRI2001.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy