SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Heuven Steven) "

Sökning: WFRF:(van Heuven Steven)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ericson, Ylva, et al. (författare)
  • Increasing carbon inventory of the intermediate layers of the Arctic Ocean
  • 2014
  • Ingår i: Journal of Geophysical Research - Oceans. - 0148-0227 .- 2156-2202. ; 119:4, s. 2312-2326
  • Tidskriftsartikel (refereegranskat)abstract
    • Concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA), nutrients, and oxygen in subsurface waters of the central Arctic Ocean have been investigated for conceivable time trends over the last two decades. Data from six cruises (1991–2011) that cover the Nansen, Amundsen, and Makarov Basins were included in this analysis. In waters deeper than 2000 m, no statistically significant trend could be observed for DIC, TA, phosphate, or nitrate, but a small rate of increase in apparent oxygen utilization (AOU) was noticeable. For the individual stations, differences in concentration of each property were computed between the mean concentrations in the Arctic Atlantic Water (AAW) or the upper Polar Deep Water (uPDW), i.e., between about 150 and 1400 m depth, and in the deep water (assumed invariable over time). In these shallower water layers, we observe significant above-zero time trends for DIC, in the range of 0.6–0.9 μmol kg−1 yr−1 (for AAW) and 0.4–0.6 µmol kg−1 yr−1 (for uPDW). No time trend in nutrients could be observed, indicating no change in the rate of organic matter mineralization within this depth range. Consequently, the buildup of DIC is attributed to increasing concentrations of anthropogenic carbon in the waters flowing into these depth layers of the Arctic Ocean. The resulting rate of increase of the column inventory of anthropogenic CO2 is estimated to be between 0.6 and 0.9 mol C m−2 yr−1, with distinct differences between basins.
  •  
2.
  • Steinhoff, Tobias, et al. (författare)
  • Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of Certified Stations : The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans
  • 2019
  • Ingår i: Frontiers in Marine Science. - : FRONTIERS MEDIA SA. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • The European Research Infrastructure Consortium "Integrated Carbon Observation System" (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP - Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. The stations operate in a harmonized and standardized way based on community-proven protocols and methods for ocean GHG observations, improving operational conformity as well as quality control and assurance of the data. This enables the network to focus on long term research into the marine carbon cycle and the anthropogenic carbon sink, while preparing the network to include other GHG fluxes. ICOS data are processed on a near real-time basis and will be published on the ICOS Carbon Portal (CP), allowing monthly estimates of CO2 air-sea exchange to be quantified for European waters. ICOS establishes transparent operational data management routines following the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding principles allowing amongst others reproducibility, interoperability, and traceability. The ICOS-Oceans network is actively integrating with the atmospheric (e.g., improved atmospheric measurements onboard SOOP lines) and ecosystem (e.g., oceanic direct gas flux measurements) domains of ICOS, and utilizes techniques developed by the ICOS Central Facilities and the CP. There is a strong interaction with the international ocean carbon cycle community to enhance interoperability and harmonize data flow. The future vision of ICOS-Oceans includes ship-based ocean survey sections to obtain a three-dimensional understanding of marine carbon cycle processes and optimize the existing network design.
  •  
3.
  • Ulfsbo, Adam, 1985, et al. (författare)
  • Late summer net community production in the central Arctic Ocean using multiple approaches
  • 2014
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 28:10, s. 1129-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale patterns of net community production (NCP) were estimated during the late summer cruise ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean. Several approaches were used based on the following: (i) continuous measurements of surface water oxygen to argon ratios (O2/Ar), (ii) underway measurements of surface partial pressure of carbon dioxide (pCO2), (iii) discrete samples of dissolved inorganic carbon, and (iv) dissolved inorganic nitrogen and phosphate. The NCP estimates agreed well within the uncertainties associated with each approach. The highest late summer NCP (up to 6mol C m−2) was observed in the marginal sea ice zone region. Low values (<1mol C m−2) were found in the sea ice-covered deep basins with a strong spatial variability. Lowest values were found in the Amundsen Basin and moderate values in the Nansen and Makarov Basins with slightly higher estimates over the Mendeleev Ridge. Our findings support a coupling of NCP to sea ice coverage and nutrient supply and thus stress a potential change in spatial and temporal distribution of NCP in a future Arctic Ocean. To follow the evolution of NCP in space and time, it is suggested to apply one or several of these approaches in shipboard investigations with a time interval of 3 to 5 years.
  •  
4.
  • Zanchetta, Alessandro, et al. (författare)
  • Sources and sinks of carbonyl sulfide inferred from tower and mobile atmospheric observations in the Netherlands
  • 2023
  • Ingår i: Biogeosciences. - 1726-4170. ; 20:16, s. 3539-3553
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonyl sulfide (COS) is a promising tracer for the estimation of terrestrial ecosystem gross primary production (GPP). However, understanding its non-GPP-related sources and sinks, e.g., anthropogenic sources and soil sources and sinks, is also critical to the success of the approach. Here we infer the regional sources and sinks of COS using continuous in situ mole fraction profile measurements of COS along the 60gm tall Lutjewad tower (1gmga.s.l.; 53g 24′gN, 6g 21′gE) in the Netherlands. To identify potential sources that caused the observed enhancements of COS mole fractions at Lutjewad, both discrete flask samples and in situ measurements in the province of Groningen were made from a mobile van using a quantum cascade laser spectrometer (QCLS). We also simulated the COS mole fractions at Lutjewad using the Stochastic Time-Inverted Lagrangian Transport (STILT) model combined with emission inventories and plant uptake fluxes. We determined the nighttime COS fluxes to be -3.0±2.6gpmolgm-2gs-1 using the radon-tracer correlation approach and Lutjewad observations. Furthermore, we identified and quantified several COS sources, including biodigesters, sugar production facilities and silicon carbide production facilities in the province of Groningen. Moreover, the simulation results show that the observed COS enhancements can be partially explained by known industrial sources of COS and CS2, in particular from the Ruhr Valley (51.5gN, 7.2gE) and Antwerp (51.2gN, 4.4gE) areas. The contribution of likely missing anthropogenic sources of COS and CS2 in the inventory may be significant. The impact of the identified sources in the province of Groningen is estimated to be negligible in terms of the observed COS enhancements. However, in specific conditions, these sources may influence the measurements in Lutjewad. These results are valuable for improving our understanding of the sources and sinks of COS, contributing to the use of COS as a tracer for GPP.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy