SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Huissteden J.) "

Sökning: WFRF:(van Huissteden J.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Metzger, Christine, et al. (författare)
  • CO2 fluxes and ecosystem dynamics at five European treeless peatlands - merging data and process oriented modeling
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 12:1, s. 125-146
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon dioxide (CO2) exchange of five different peatland systems across Europe with a wide gradient in land use intensity, water table depth, soil fertility and climate was simulated with the process oriented CoupModel. The aim of the study was to find out whether CO2 fluxes, measured at different sites, can be explained by common processes and parameters or to what extend a site specific configuration is needed. The model was calibrated to fit measured CO2 fluxes, soil temperature, snow depth and leaf area index (LAI) and resulting differences in model parameters were analyzed. Finding site independent model parameters would mean that differences in the measured fluxes could be explained solely by model input data: water table, meteorological data, management and soil inventory data. Seasonal variability in the major fluxes was well captured, when a site independent configuration was utilized for most of the parameters. Parameters that differed between sites included the rate of soil organic decomposition, photosynthetic efficiency, and regulation of the mobile carbon (C) pool from senescence to shooting in the next year. The largest difference between sites was the rate coefficient for heterotrophic respiration. Setting it to a common value would lead to underestimation of mean total respiration by a factor of 2.8 up to an overestimation by a factor of 4. Despite testing a wide range of different responses to soil water and temperature, rate coefficients for heterotrophic respiration were consistently the lowest on formerly drained sites and the highest on the managed sites. Substrate decomposability, pH and vegetation characteristics are possible explanations for the differences in decomposition rates. Specific parameter values for the timing of plant shooting and senescence, the photosynthesis response to temperature, litter fall and plant respiration rates, leaf morphology and allocation fractions of new assimilates, were not needed, even though the gradient in site latitude ranged from 48 degrees N (southern Germany) to 68 degrees N (northern Finland) differed largely in their vegetation. This was also true for common parameters defining the moisture and temperature response for decomposition, leading to the conclusion that a site specific interpretation of these processes is not necessary. In contrast, the rate of soil organic decomposition, photosynthetic efficiency, and the regulation of the mobile carbon pool need to be estimated from available information on specific soil conditions, vegetation and management of the ecosystems, to be able to describe CO2 fluxes under different conditions.
  •  
2.
  • Parmentier, Frans-Jan, et al. (författare)
  • Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra
  • 2011
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 116, s. 04013-04013
  • Tidskriftsartikel (refereegranskat)abstract
    • With global warming, snowmelt is occurring earlier and growing seasons are becoming longer around the Arctic. It has been suggested that this would lead to more uptake of carbon due to a lengthening of the period in which plants photosynthesize. To investigate this suggestion, 8 consecutive years of eddy covariance measurements at a northeastern Siberian graminoid tundra site were investigated for patterns in net ecosystem exchange, gross primary production (GPP) and ecosystem respiration (R-eco). While GPP showed no clear increase with longer growing seasons, it was significantly increased in warmer summers. Due to these warmer temperatures however, the increase in uptake was mostly offset by an increase in R-eco. Therefore, overall variability in net carbon uptake was low, and no relationship with growing season length was found. Furthermore, the highest net uptake of carbon occurred with the shortest and the coldest growing season. Low uptake of carbon mostly occurred with longer or warmer growing seasons. We thus conclude that the net carbon uptake of this ecosystem is more likely to decrease rather than to increase under a warmer climate. These results contradict previous research that has showed more net carbon uptake with longer growing seasons. We hypothesize that this difference is due to site-specific differences, such as climate type and soil, and that changes in the carbon cycle with longer growing seasons will not be uniform around the Arctic.
  •  
3.
  • Parmentier, Frans-Jan, et al. (författare)
  • Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia
  • 2011
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 116, s. 03016-03016
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past two decades, the eddy covariance technique has been used for an increasing number of methane flux studies at an ecosystem scale. Previously, most of these studies used a closed path setup with a tunable diode laser spectrometer (TDL). Although this method worked well, the TDL has to be calibrated regularly and cooled with liquid nitrogen or a cryogenic system, which limits its use in remote areas. Recently, a new closed path technique has been introduced that uses off-axis integrated cavity output spectroscopy that does not require regular calibration or liquid nitrogen to operate and can thus be applied in remote areas. In the summer of 2008 and 2009, this eddy covariance technique was used to study methane fluxes from a tundra site in northeastern Siberia. The measured emissions showed to be very dependent on the fetch area, due to a large contrast in dry and wet vegetation in between wind directions. Furthermore, the observed short-and long-term variation of methane fluxes could be readily explained with a nonlinear model that used relationships with atmospheric stability, soil temperature, and water level. This model was subsequently extended to fieldwork periods preceding the eddy covariance setup and applied to evaluate a spatially integrated flux. The model result showed that average fluxes were 56.5, 48.7, and 30.4 nmol CH4 m(-2) s(-1) for the summers of 2007 to 2009. While previous models of the same type were only applicable to daily averages, the method described can be used on a much higher temporal resolution, making it suitable for gap filling. Furthermore, by partitioning the measured fluxes along wind direction, this model can also be used in areas with nonuniform terrain but nonetheless provide spatially integrated fluxes.
  •  
4.
  • Parmentier, Frans-Jan, et al. (författare)
  • The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra
  • 2011
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 8:5, s. 1267-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the microbial processes governing methane emissions from tundra ecosystems is receiving increasing attention. Recently, cooperation between methanotrophic bacteria and submerged Sphagnum was shown to reduce methane emissions but also to supply CO2 for photosynthesis for the plant. Although this process was shown to be important in the laboratory, the differences that exist in methane emissions from inundated vegetation types with or without Sphagnum in the field have not been linked to these bacteria before. In this study, chamber flux measurements, an incubation study and a process model were used to investigate the drivers and controls on the relative difference in methane emissions between a submerged Sphagnum/sedge vegetation type and an inundated sedge vegetation type without Sphagnum. It was found that methane emissions in the Sphagnumdominated vegetation type were 50% lower than in the vegetation type without Sphagnum. A model sensitivity analysis showed that these differences could not sufficiently be explained by differences in methane production and plant transport. The model, combined with an incubation study, indicated that methane oxidation by endophytic bacteria, living in cooperation with submerged Sphagnum, plays a significant role in methane cycling at this site. This result is important for spatial upscaling as oxidation by these bacteria is likely involved in 15% of the net methane emissions at this tundra site. Our findings support the notion that methane-oxidizing bacteria are an important factor in understanding the processes behind methane emissions in tundra.
  •  
5.
  • Budishchev, A., et al. (författare)
  • Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:17, s. 4651-4664
  • Tidskriftsartikel (refereegranskat)abstract
    • Most plot-scale methane emission models - of which many have been developed in the recent past - are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC) flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r(2) = 0.7). In contrast, using the area-weighted average method yielded a low (r(2) = 0.14) correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.
  •  
6.
  • Mi, Y., et al. (författare)
  • Improving a plot-scale methane emission model and its performance at a northeastern Siberian tundra site
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:14, s. 3985-3999
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to better address the feedbacks between climate and wetland methane (CH4) emissions, we tested several mechanistic improvements to the wetland CH4 emission model Peatland-VU with a longer Arctic data set than any other model: (1) inclusion of an improved hydrological module, (2) incorporation of a gross primary productivity (GPP) module, and (3) a more realistic soil-freezing scheme. A long time series of field measurements (2003-2010) from a tundra site in northeastern Siberia is used to validate the model, and the generalized likelihood uncertainty estimation (GLUE) methodology is used to test the sensitivity of model parameters. Peatland-VU is able to capture both the annual magnitude and seasonal variations of the CH4 flux, water table position, and soil thermal properties. However, detailed daily variations are difficult to evaluate due to data limitation. Improvements due to the inclusion of a GPP module are less than anticipated, although this component is likely to become more important at larger spatial scales because the module can accommodate the variations in vegetation traits better than at plot scale. Sensitivity experiments suggest that the methane production rate factor, the methane plant oxidation parameter, the reference temperature for temperature-dependent decomposition, and the methane plant transport rate factor are the most important parameters affecting the data fit, regardless of vegetation type. Both wet and dry vegetation cover are sensitive to the minimum water table level; the former is also sensitive to the runoff threshold and open water correction factor, and the latter to the subsurface water evaporation and evapotranspiration correction factors. These results shed light on model parameterization and future improvement of CH4 modelling. However, high spatial variability of CH4 emissions within similar vegetation/soil units and data quality prove to impose severe limits on model testing and improvement.
  •  
7.
  • Peltola, O., et al. (författare)
  • Studying the spatial variability of methane flux with five eddy covariance towers of varying height
  • 2015
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 214, s. 456-472
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the spatial representativeness of eddy covariance (EC) methane (CH4) measurements was examined by comparing parallel CH4 fluxes from three short (6 m) towers separated by a few kilometres and from two higher levels (20 m and 60 m) at one location. The measurement campaign was held on an intensively managed grassland on peat soil in the Netherlands. The land use and land cover types are to a large degree homogeneous in the area. The CH4 fluxes exhibited significant variability between the sites on 30-min scale. The spatial coefficient of variation (CVspa) between the three short towers was 56% and it was of similar magnitude as the temporal variability, unlike for the other fluxes (friction velocity, sensible heat flux) for which the temporal variability was considerably larger than the spatial variability. The CVspa decreased with temporal averaging, although less than what could be expected for a purely random process (1/root N), and it was 14% for 26-day means of CH4 flux. This reflects the underlying heterogeneity of CH4 flux in the studied landscape at spatial scales ranging from 1 ha (flux footprint) to 10 km(2) (area bounded by the short towers). This heterogeneity should be taken into account when interpreting and comparing EC measurements. On an annual scale, the flux spatial variability contributed up to 50% of the uncertainty in CH4 emissions. It was further tested whether EC flux measurements at higher levels could be used to acquire a more accurate estimate of the spatially integrated CH4 emissions. Contrarily to what was expected, flux intensity was found to both increase and decrease depending on measurement height. Using footprint modelling, 56% of the variation between 6 m and 60 m CH4 fluxes was attributed to emissions from local anthropogenic hotspots (farms). Furthermore, morning hours proved to be demanding for the tall tower EC where fluxes at 60 m were up to four-fold those at lower heights. These differences were connected with the onset of convective mixing during the morning period. (C) 2015 The Authors. Published by Elsevier B.V.
  •  
8.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The uncertain climate footprint of wetlands under human pressure
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 112:15, s. 4594-4599
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.
  •  
9.
  • van Huissteden, J., et al. (författare)
  • Methane emissions from permafrost thaw lakes limited by lake drainage
  • 2011
  • Ingår i: Nature Climate Change. - 1758-6798. ; 1:2, s. 119-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane(1-5). They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs 6,7). Their expansion is enhanced by climate warming, which boosts methane emission and contributes a positive feedback to future climate change(3,4,8). Modelling of thaw-lake growth is necessary to quantify this feedback. Here, we present a two-dimensional landscape-scale model that includes the entire life cycle of thaw lakes; initiation, expansion, drainage and eventual re-initiation. Application of our model to past and future lake expansion in northern Siberia shows that lake drainage strongly limits lake expansion, even under conditions of continuous permafrost. Our results suggest that methane emissions from thaw lakes in Siberia are an order of magnitude less alarming than previously suggested, although predicted lake expansion will still profoundly affect permafrost ecosystems and infrastructure.
  •  
10.
  • Chadburn, Sarah E., et al. (författare)
  • Carbon stocks and fluxes in the high latitudes : using site-level data to evaluate Earth system models
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:22, s. 5143-5169
  • Tidskriftsartikel (refereegranskat)abstract
    • It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy