SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van de Veen Willem) "

Sökning: WFRF:(van de Veen Willem)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Riggioni, Carmen, et al. (författare)
  • A compendium answering 150 questions on COVID-19 and SARS-CoV-2
  • 2020
  • Ingår i: Allergy: European Journal of Allergy and Clinical Immunology. - : Wiley. - 0105-4538. ; 75:10, s. 2503-2541
  • Forskningsöversikt (refereegranskat)abstract
    • In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome–related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date, it has resulted in ~9 million confirmed cases and caused almost 500 000 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socioeconomic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a “cytokine storm” leading to acute respiratory distress syndrome, endothelitis, thromboembolic complications, and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19–related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19, and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development, and epidemiology. A total of 150 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.
  •  
2.
  •  
3.
  • Jespers, Willem, et al. (författare)
  • QresFEP : An Automated Protocol for Free Energy Calculations of Protein Mutations in Q
  • 2019
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:10, s. 5461-5473
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting the effect of single-point mutations on protein stability or protein-ligand binding is a major challenge in computational biology. Free energy calculations constitute the most rigorous approach to this problem, though the estimation of converged values for amino acid mutations remains challenging. To overcome this limitation, we developed tailored protocols to calculate free energy shifts associated with single-point mutations. We herein describe the QresFEP protocol, which includes an extension of our recent protocols to cover all amino acids mutations, based on the latest versions of the OPLS-AA force field. QresFEP is implemented in an application programming interface framework and the graphic interface QGui, for the molecular dynamics software Q. The complete protocol is benchmarked in several model systems, optimizing a number of sampling parameters and the implementation of Zwanzig's exponential formula and Bennet's acceptance ratio methods. QresFEP shows an excellent performance on estimating the hydration free energies of amino acid side-chain mimics, including their charged analogues. We also examined its performance on a protein-ligand binding problem of pharmaceutical relevance, the antagonism of neuropeptide Y1 G protein-coupled receptor. Here, the calculations show very good agreement with the experimental effect of 16 mutations on the binding of antagonists BIBP3226, in line with our recent applications in this field. Finally, the characterization of 43 mutations of T4-lysozyme reveals the capacity of our protocol to assess variations of the thermal stability of proteins, achieving a similar performance to alternative free energy perturbation (FEP) approaches. In summary, QresFEP is a robust, versatile, and user-friendly computational FEP protocol to examine biochemical effects of single-point mutations with high accuracy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy