SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van der Graaf Piet H.) "

Sökning: WFRF:(van der Graaf Piet H.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Van Wijk, Rob C., 1991-, et al. (författare)
  • Quantification of Natural Growth of Two Strains of Mycobacterium Marinum for Translational Antituberculosis Drug Development
  • 2020
  • Ingår i: Clinical and Translational Science. - : Wiley. - 1752-8054 .- 1752-8062. ; 13:6, s. 1060-1064
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebrafish infected with Mycobacterium marinum (M. marinum) is an attractive tuberculosis disease model, showing similar pathogenesis to Mycobacterium tuberculosis (M. tuberculosis) infections in humans. To translate pharmacological findings from this disease model to higher vertebrates, a quantitative understanding of the natural growth of M. marinum in comparison to the natural growth of M. tuberculosis is essential. Here, the natural growth of two strains of M. marinum, E11 and MUSA, is studied over an extended period using an established model‐based approach, the multistate tuberculosis pharmacometric (MTP) model, for comparison to that of M. tuberculosis. Poikilotherm‐derived strain E11 and human‐derived strain MUSA were grown undisturbed up to 221 days and viability of cultures (colony forming unit (CFU)/mL) was determined by plating at different time points. Nonlinear mixed effects modeling using the MTP model quantified the bacterial growth, the transfer among fast, slow, and non‐multiplying states, and the inoculi. Both strains showed initial logistic growth, reaching a maximum after 20–25 days for E11 and MUSA, respectively, followed by a decrease to a new plateau. Natural growth of both E11 and MUSA was best described with Gompertz growth functions. For E11, the inoculum was best described in the slow‐multiplying state, for MUSA in the fast‐multiplying state. Natural growth of E11 was most similar to that of M. tuberculosis, whereas MUSA showed more aggressive growth behavior. Characterization of natural growth of M. marinum and quantitative comparison with M. tuberculosis brings the zebrafish tuberculosis disease model closer to the quantitative translational pipeline of antituberculosis drug development.
  •  
2.
  • Van Wijk, Rob C., 1991-, et al. (författare)
  • Anti‐tuberculosis effect of isoniazid scales accurately from zebrafish to humans
  • 2020
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 0007-1188 .- 1476-5381. ; 177:24, s. 5518-5533
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purposeThere is a strong need for innovation in anti-tuberculosis drug development. The zebrafish larva is an attractive disease model in tuberculosis research. To translate pharmacological findings to higher vertebrates, including humans, the internal exposure of drugs needs to be quantified and linked to observed response.Experimental approachIn zebrafish studies, drugs are commonly dissolved in the external water, posing a challenge to quantify internal exposure. We developed experimental methods to quantify internal exposure, including nano-scale blood sampling, and to quantify the bacterial burden, using automated fluorescence imaging analysis, with isoniazid as paradigm compound. We used pharmacokinetic-pharmacodynamic modelling to quantify the exposure-response relationship responsible for the antibiotic response. To translate isoniazid response to humans, the quantitative exposure-response relationship in zebrafish was linked to simulated concentration-time profiles in humans, and two quantitative translational factors on sensitivity to isoniazid and stage of infection were included.Key resultsBlood concentration was only 20% of the external drug concentration. The bacterial burden increased exponentially and an isoniazid dose corresponding to 15 mg·L-1internal concentration (minimum inhibitory concentration) lead to bacteriostasis of the mycobacterial infection in the zebrafish. The concentration-effect relationship was quantified, and based on that relationship and the translational factors, the isoniazid response was translated to humans, which correlated well with observed data.Conclusions and implicationsThis proof-of-concept confirms the potential of the zebrafish larvae as tuberculosis disease model in translational pharmacology, and contributes to innovative anti-tuberculosis drug development which is strongly needed.
  •  
3.
  • Clewe, Oskar, 1986- (författare)
  • Novel Pharmacometric Methods for Informed Tuberculosis Drug Development
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With approximately nine million new cases and the attributable cause of death of an estimated two millions people every year there is an urgent need for new and effective drugs and treatment regimens targeting tuberculosis. The tuberculosis drug development pathway is however not ideal, containing non-predictive model systems and unanswered questions that may increase the risk of failure during late-phase drug development. The aim of this thesis was hence to develop pharmacometric tools in order to optimize the development of new anti-tuberculosis drugs and treatment regimens.The General Pulmonary Distribution model was developed allowing for prediction of both rate and extent of distribution from plasma to pulmonary tissue. A distribution characterization that is of high importance as most current used anti-tuberculosis drugs were introduced into clinical use without considering the pharmacokinetic properties influencing drug distribution to the site of action. The developed optimized bronchoalveolar lavage sampling design provides a simplistic but informative approach to gathering of the data needed to allow for a model based characterization of both rate and extent of pulmonary distribution using as little as one sample per subject. The developed Multistate Tuberculosis Pharmacometric model provides predictions over time for a fast-, slow- and non-multiplying bacterial state with and without drug effect. The Multistate Tuberculosis Pharmacometric model was further used to quantify the in vitro growth of different strains of Mycobacterium tuberculosis and the exposure-response relationships of three first line anti-tuberculosis drugs. The General Pharmacodynamic Interaction model was successfully used to characterize the pharmacodynamic interactions of three first line anti-tuberculosis drugs, showing the possibility of distinguishing drug A’s interaction with drug B from drug B’s interaction with drug A. The successful separation of all three drugs effect on each other is a necessity for future work focusing on optimizing the selection of anti-tuberculosis combination regimens.With a focus on pharmacokinetics and pharmacodynamics, the work included in this thesis provides multiple new methods and approaches that individually, but maybe more important the combination of, has the potential to inform development of new but also to provide additional information of the existing anti-tuberculosis drugs and drug regimen.
  •  
4.
  •  
5.
  • Stevens, Jasper, et al. (författare)
  • Mechanism-based PK-PD model for the prolactin biological system response following an acute dopamine inhibition challenge : quantitative extrapolation to humans
  • 2012
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 39:5, s. 463-477
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this investigation was to develop a mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model for the biological system prolactin response following a dopamine inhibition challenge using remoxipride as a paradigm compound. After assessment of baseline variation in prolactin concentrations, the prolactin response of remoxipride was measured following (1) single intravenous doses of 4, 8 and 16 mg/kg and (2) following double dosing of 3.8 mg/kg with different time intervals. The mechanistic PK-PD model consisted of: (i) a PK model for remoxipride concentrations in brain extracellular fluid; (ii) a pool model incorporating prolactin synthesis, storage in lactotrophs, release into- and elimination from plasma; (iii) a positive feedback component interconnecting prolactin plasma concentrations and prolactin synthesis; and (iv) a dopamine antagonism component interconnecting remoxipride brain extracellular fluid concentrations and stimulation of prolactin release. The most important findings were that the free brain concentration drives the prolactin release into plasma and that the positive feedback on prolactin synthesis in the lactotrophs, in contrast to the negative feedback in the previous models on the PK-PD correlation of remoxipride. An external validation was performed using a dataset obtained in rats following intranasal administration of 4, 8, or 16 mg/kg remoxipride. Following simulation of human remoxipride brain extracellular fluid concentrations, pharmacodynamic extrapolation from rat to humans was performed, using allometric scaling in combination with independent information on the values of biological system specific parameters as prior knowledge. The PK-PD model successfully predicted the system prolactin response in humans, indicating that positive feedback on prolactin synthesis and allometric scaling thereof could be a new feature in describing complex homeostatic mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy