SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van der Meulen Nicholas P) "

Sökning: WFRF:(van der Meulen Nicholas P)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Cleynen, Isabelle, et al. (författare)
  • Inherited determinants of Crohn's disease and ulcerative colitis phenotypes : a genetic association study
  • 2016
  • Ingår i: The Lancet. - New York, USA : Elsevier. - 0140-6736 .- 1474-547X. ; 387:10014, s. 156-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases.Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34,819 patients (19,713 with Crohn's disease, 14,683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype-phenotype associations across 156,154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile.Findings: After quality control, the primary analysis included 29,838 patients (16,902 with Crohn's disease, 12,597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with disease subphenotype (p=1·65 × 10(-78)), even after exclusion of NOD2, MHC, and 3p21 (p=9·23 × 10(-18)). Predictive models based on the genetic risk score strongly distinguished colonic from ileal Crohn's disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk profiles who were significantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10(-4)).Interpretation: Our data support a continuum of disorders within inflammatory bowel disease, much better explained by three groups (ileal Crohn's disease, colonic Crohn's disease, and ulcerative colitis) than by Crohn's disease and ulcerative colitis as currently defined. Disease location is an intrinsic aspect of a patient's disease, in part genetically determined, and the major driver to changes in disease behaviour over time.Funding: International Inflammatory Bowel Disease Genetics Consortium members funding sources (see Acknowledgments for full list).
  •  
3.
  • Haller, Stephanie, et al. (författare)
  • Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of (161)Tb-folate and (177)Lu-folate.
  • 2016
  • Ingår i: EJNMMI research. - : Springer Science and Business Media LLC. - 2191-219X. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The radiolanthanide (161)Tb has, in recent years, attracted increasing interest due to its favorable characteristics for medical application. (161)Tb exhibits similar properties to the widely-used therapeutic radionuclide (177)Lu. In contrast to (177)Lu, (161)Tb yields a significant number of short-ranging Auger/conversion electrons (≤50keV) during its decay process. (161)Tb has been shown to be more effective for tumor therapy than (177)Lu if applied using the same activity. The purpose of this study was to investigate long-term damage to the kidneys after application of (161)Tb-folate and compare it to the renal effects caused by (177)Lu-folate.
  •  
4.
  • Hemmingsson, Jens, 1986, et al. (författare)
  • Active bone marrow S-values for the low-energy electron emitter terbium-161 compared to S-values for lutetium-177 and yttrium-90.
  • 2022
  • Ingår i: EJNMMI physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on theoretical and preclinical results, terbium-161 may be a valid alternative to lutetium-177 and yttrium-90 in radionuclide therapies. The large low-energy electron emission from terbium-161 is a favorable feature in the treatment of disseminated disease, but its impact on the radiosensitive bone marrow needs to be evaluated. Using voxel-based skeletal dosimetry models in which active bone marrow is defined as regions containing stem cells and progenitor cells of the hematopoietic lineage, we generated S-values (absorbed dose per decay) for terbium-161 and evaluated its distribution-dependence in bone marrow cavities.S-values in the active bone marrow were calculated for terbium-161, lutetium-177, and yttrium-90 irradiation using two (male/female) image-based bone marrow dosimetry models. The radionuclides were distributed to one of the three structures that define the spongiosa bone region in the skeletal models: (i) active bone marrow, (ii) inactive bone marrow, or (iii) surface or whole volume of the trabecular bone. Decay data from ICRP 107 were combined with specific absorbed fractions to calculate S-values for 13 skeletal sites. To increase the utility, the skeletal site-specific S-values were averaged to produce whole-body average S-values and spongiosa average S-values.For yttrium-90, the high-energy β particles irradiate the active marrow regardless of the source compartment, consistently generating the highest S-values (65-90% higher). Between terbium-161 and lutetium-177, the largest differences in S-values were with an active marrow source (50%), such as self-irradiation, due to the contribution of the short-ranged conversion and Auger electrons from terbium-161. Their influence decreased as the source moved to inactive marrow or the surface or volume of the trabecular bone, reducing the S-values and the differences between terbium-161 and lutetium-177 (15-35%).The S-values of terbium-161 for active bone marrow and, consequently, the bone marrow toxicity profile were more dependent on the radionuclide distribution within the bone marrow cavity than the S-values of lutetium-177 and yttrium-90. This effect was attributed to the considerable low-energy electron emission of terbium-161. Therefore, it will be critical to investigate the bone marrow distribution of a particular radiopharmaceutical for accurate estimation of the active bone marrow dose.
  •  
5.
  • Honarvar, Hadis, et al. (författare)
  • Evaluation of the first Sc-44-labeled Affibody molecule for imaging of HER2-expressing tumors
  • 2017
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 45, s. 15-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Affibody molecules are small (58 amino acids) high-affinity proteins based on a tri-helix nonimmunoglobulin scaffold. A clinical study has demonstrated that PET imaging using Affibody molecules labeled with Ga-68 (T-1/2 = 68 min) can visualize metastases of breast cancer expressing human epidermal growth factor receptor type 2 (HER2) and provide discrimination between tumors with high and low expression level. This may help to identify breast cancer patients benefiting from HER2-targeting therapies. The best discrimination was at 4 h post injection. Due to longer half-life, a positron-emitting radionuclide Sc-44 (T-1/2 = 4.04 h) might be a preferable label for Affibody molecules for imaging at several hours after injection. Methods: A synthetic second-generation anti-HER2 Affibody molecule Z(HER2:2891) was labeled with Sc-44 via a DOTA-chelator conjugated to the N-terminal amino group. Binding specificity, affinity and cellular processing Sc-44-DOTA-Z(HER2:2891) and Ga-68-DOTA-Z(HER2:2891) were compared in vitro using HER2-expressing cells. Biodistribution and imaging properties of Sc-44-DOTA-Z(HER2,2891) and Ga-68-DOTA-Z(HER2:2891) were evaluated in Balb/c nude mice bearing HER2-expression xenografts. Results: The labeling yield of 98 +/- 2% and specific activity of 7.8 GBq/mu mol were obtained. The conjugate demonstrated specific binding to HER2-expressing SKOV3.ip cells in vitro and to SKOV3.ip xenografts in nude mice. The distribution of radioactivity at 3 h post injection was similar for Sc-44-DOTA-Z(HER2:2891) and Ga-68-DOTA-Z(HER2:2891), but the blood clearance of the Sc-44-labeled variant was slower and the tumor-to-blood ratio was reduced (15 +/- 2 for (SC)-S-44-DOTA-Z(HER2:2891) vs 46 +/- 9 for Ga-68-DOTA-Z(HER2.2891)). At 6 h after injection of Sc-44-DOTA-Z(HER2,2891) the tumor uptake was 8 +/- 2% IA/g and the tumor-to-blood ratio was 51 +/- 8. Imaging using small-animal PET/CT demonstrated that (SC)-S-44-DOTA-ZHER2,2891 provides specific and high-contrast imaging of HER2-expressing xenografts. Conclusion: The Sc-44- DOTA-Z(HER2:2891) Affibody molecule is a promising probe for imaging of HER2-expression in malignant tumors.
  •  
6.
  • Tschan, Viviane J., et al. (författare)
  • Albumin-Binding and Conventional PSMA Ligands in Combination with 161Tb: Biodistribution, Dosimetry, and Preclinical Therapy
  • 2023
  • Ingår i: JOURNAL OF NUCLEAR MEDICINE. - 0161-5505 .- 1535-5667. ; 64:10, s. 1625-1631
  • Tidskriftsartikel (refereegranskat)abstract
    • The favorable decay characteristics of 161Tb attracted the interest of clinicians in using this novel radionuclide for radioligand therapy (RLT). 161Tb decays with a similar half-life to 177Lu, but beyond the emission of b2-particles and g-rays, 161Tb also emits conversion and Auger electrons, which may be particularly effective to eliminate micrometastases. The aim of this study was to compare the dosimetry and therapeutic efficacy of 161Tb and 177Lu in tumor-bearing mice using SibuDAB and PSMA-I&T, which differ in their blood residence time and tumor uptake. Methods: [161Tb]Tb-SibuDAB and [161Tb]Tb-PSMA-I&T were evaluated in vitro and investigated in biodistribution, imaging, and therapy studies using PC-3 PIP tumor-bearing mice. The 177Lu-labeled counterparts served for dose calculations and comparison of therapeutic efficacy. The tolerability of RLT in mice was monitored on the basis of body mass, blood plasma parameters, blood cell counts, and the histology of relevant organs and tissues. Results: The prostate-specific membrane antigen (PSMA)-targeting radioligands, irrespective of whether labeled with 161Tb or 177Lu, showed similar in vitro data and comparable tissue distribution profiles. As a result of the albuminbinding properties, [161Tb]Tb/[177Lu]Lu-SibuDAB had an enhanced blood residence time and higher tumor uptake (62%-69% injected activity per gram at 24 h after injection) than [161Tb]Tb/[177Lu]LuPSMA-I&T (30%-35% injected activity per gram at 24 h after injection). [161Tb]Tb-SibuDAB inhibited tumor growth more effectively than [161Tb]Tb-PSMA-I&T, as can be ascribed to its 4-fold increased absorbed tumor dose. At any of the applied activities, the 161Tb-based radioligands were therapeutically more effective than their 177Lulabeled counterparts, as agreed with the approximately 40% increased tumor dose of 161Tb compared with that of 177Lu. Under the given experimental conditions, no obvious adverse events were observed. Conclusion: The data of this study indicate the promising potential of 161Tb in combination with SibuDAB for RLT of prostate cancer. Future clinical studies using 161Tb-based RLT will shed light on a potential clinical benefit of 161Tb over 177Lu.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy