SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(von Euler Gabriel) "

Sökning: WFRF:(von Euler Gabriel)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bendel, Olof, et al. (författare)
  • Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory
  • 2005
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 25:12, s. 1586-1595
  • Tidskriftsartikel (refereegranskat)abstract
    • The pyramidal neurons of the hippocampal CA1 region are essential for cognitive functions such as spatial learning and memory, and are selectively destroyed after cerebral ischemia. To analyze whether degenerated CA1 neurons are replaced by new neurons and whether such regeneration is associated with amelioration in learning and memory deficits, we have used a rat global ischemia model that provides an almost complete disappearance (to approximately 3% of control) of CA1 neurons associated with a robust impairment in spatial learning and memory at two weeks after ischemia. We found that transient cerebral ischemia can evoke a massive formation of new neurons in the CA1 region, reaching approximately 40% of the original number of neurons at 90 days after ischemia (DAI). Co-localization of the mature neuronal marker neuronal nuclei with 5-bromo-2'-deoxyuridine in CA1 confirmed that neurogenesis indeed had occurred after the ischemic insult. Furthermore, we found increased numbers of cells expressing the immature neuron marker polysialic acid neuronal cell adhesion molecule in the adjacent lateral periventricular region, suggesting that the newly formed neurons derive from this region. The reappearance of CA1 neurons was associated with a recovery of ischemia-induced impairments in spatial learning and memory at 90 DAI, suggesting that the newly formed CA1 neurons restore hippocampal CA1 function. In conclusion, these results show that the brain has an endogenous capacity to form new nerve cells after injury, which correlates with a restoration of cognitive functions of the brain.
  •  
2.
  • Bendel, Olof, et al. (författare)
  • Reproducible loss of CA1 neurons following carotid artery occlusion combined with halothane-induced hypotension
  • 2005
  • Ingår i: Brain Research. - : Elsevier. - 0006-8993 .- 1872-6240. ; 1033:2, s. 135-142
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2-vessel occlusion approach to produce global ischemia in rats requires concomitant reduction of systemic blood pressure. We have utilized the hypotensive effect of halothane administrated by artificial respiration to prevent respiratory arrest and to ensure stable physiological conditions. Systemic blood pressure was reduced to 40-45 mmHg by instant adjustments of the halothane concentration. Bilateral occlusion of the carotid arteries caused a profound and reproducible ischemia, as analyzed by laser-Doppler flowmetry. In the rats exposed to 11, 12, or 13 min of ischemia, 5% died and 5% developed seizures. The extent of neuronal death in CA1 was highly correlated to the duration of ischemia. Following 11 min of ischemia, CA1 neuronal cell death, as analyzed by Fluoro-Jade, was absent 1 day after injury, variable at day 4, and consistent at day 7. The numbers of cresyl violet- and NeuN-positive neurons at day 7 were 8% and 20% of control, respectively. OX42 immunoreactivity was low and variable at day 4, but pronounced at day 7. In conclusion, this rat global ischemia model is relatively simple to perform, has a low mortality, and produces a profound and highly reproducible delayed cell death of hippocampal CA1 neurons.
  •  
3.
  • Bueters, Tjerk, et al. (författare)
  • Degeneration of newly formed CA1 neurons following global ischemia in the rat
  • 2008
  • Ingår i: Experimental Neurology. - New York, USA : Academic Press. - 0014-4886 .- 1090-2430. ; 209:1, s. 114-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The pyramidal neurons of the hippocampal CA1 region are essential for spatial learning and memory and are almost entirely destroyed 7-14 days after transient cerebral ischemia (DAI). Recently, we found that CA1 neurons reappeared at 21-90 DAI, in association with a recovery of ischemia-induced deficits in spatial learning and memory. However, at 125 DAI the number of neurons was fewer than at 90 DAI, suggesting that the new nerve cells undergo neurodegeneration during this time period. We therefore investigated whether neuronal degeneration occurred between 90 and 250 DAI and how this related to learning and memory performance. We found that many of the new CA1 neurons previously seen at 90 DAI had disappeared at 250 DAI. In parallel, large mineralized calcium deposits appeared in the hippocampus and thalamus, in association with neuroinflammatory and astroglial reactions. In spite of the extensive CA1 damage, the ischemic rats showed no deficiencies in spatial learning and memory, as analyzed in the Morris water maze and a complimentary water maze test based on sequential left-right choices. However, ischemia rats showed a general increase in swim length in the Morris water maze suggesting altered search behaviour. Taken together, these results indicate that the CA1 neurons that reappear after transient global ischemia to a large extent degenerate at 125-250 DAI, in parallel with the appearance of a less efficient search strategy.
  •  
4.
  •  
5.
  • von Euler, Mia, 1967-, et al. (författare)
  • Profound but transient deficits in learning and memory after global ischemia using a novel water maze test
  • 2006
  • Ingår i: Behavioural Brain Research. - Amsterdam, Netherlands : Elsevier. - 0166-4328 .- 1872-7549. ; 166:2, s. 204-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The pyramidal CA1 neurons of the hippocampus are critically involved in spatial learning and memory. These neurons are especially vulnerable to cerebral ischemia, but in spite of this, it has been consistently difficult to show any learning and memory deficits in two-vessel occlusion models of global ischemia. Transient global ischemia was induced in adult male rats under general anaesthesia administered by artificial respiration to prevent respiratory arrest. Systemic blood pressure was reduced to below 50 mmHg by instant adjustments of the halothane concentration, before and during bilateral occlusion of the carotid arteries. Cerebral blood flow was monitored by laser-Doppler flowmetry. Dying neurons were detected by TUNEL at 14 days after ischemia and surviving neurons by NeuN at 14 and 125 days after ischemia. Learning and memory was assessed in a novel water maze with three successive left-right choices. Transient global ischemia produced a profound and selective degeneration of CA1 neurons at 14 days after ischemia. This degeneration was associated with severe impairments in learning at 13 days after ischemia and in memory, as tested 24 h afterwards. At 125 days after ischemia, there was no significant learning and memory impairment, whereas the number of CA1 neurons was increased. These results show that transient global ischemia induced by two-vessel occlusion may lead to severe, but transient, impairments in learning and memory using a novel water maze, and that restored learning and memory is associated with an increased number of CA1 neurons.
  •  
6.
  • Gu, Gucci Jijuan, et al. (författare)
  • Role of Individual MARK Isoforms in Phosphorylation of Tau at Ser262 in Alzheimer's Disease
  • 2013
  • Ingår i: Neuromolecular medicine. - : Springer. - 1535-1084 .- 1559-1174. ; 15:3, s. 458-469
  • Tidskriftsartikel (refereegranskat)abstract
    • The microtubule-affinity regulating kinase (MARK) family consists of four highly conserved members that have been implicated in phosphorylation of tau protein, causing formation of neurofibrillary tangles in Alzheimer’s disease (AD). Understanding of roles by individual MARK isoform in phosphorylating tau has been limited due to lack of antibodies selective for each MARK isoform. In this study, we first applied the proximity ligation assay on cells to select antibodies specific for each MARK isoform. In cells, a CagA peptide specifically and significantly inhibited tau phosphorylation at Ser262 mediated by MARK4 but not other MARK isoforms. We then used these antibodies to study expression levels of MARK isoforms and interactions between tau and individual MARK isoforms in postmortem human brains. We found a strong and significant elevation of MARK4 expression and MARK4–tau interactions in AD brains, correlating with the Braak stages of the disease. These results suggest the MARK4–tau interactions are of functional importance in the progression of AD and the results also identify MARK4 as a promising target for AD therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy