SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(von Schiller Daniel) "

Sökning: WFRF:(von Schiller Daniel)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shumilova, Oleksandra, et al. (författare)
  • Simulating rewetting events in intermittent rivers and ephemeral streams : A global analysis of leached nutrients and organic matter
  • 2019
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 25:5, s. 1591-1611
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.
  •  
2.
  • Casas-Ruiz, Joan P., et al. (författare)
  • A tale of pipes and reactors : Controls on the in-stream dynamics of dissolved organic matter in rivers
  • 2017
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 62, s. S85-S94
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential for rivers to alter the flux of dissolved organic matter (DOM) from land to ocean is widely accepted. Yet anticipating when and where rivers behave as active reactors vs. passive pipes of DOM stands as a major knowledge gap in river biogeochemistry, resulting in uncertainties for global carbon models. Here, we investigate the controls on in-stream DOM dynamics by evaluating changes in DOM concentration and composition along several reaches of a medium-sized river network over one full hydrological year. Roughly half of the observations over time and space showed active reactor conditions and, among these, similar pro-portion of gains and losses was measured. High water residence times promoted the active over passive behavior of the reaches, while DOM properties and nitrate availability determined whether they supplied or removed DOM from the river. Among different DOM fractions, protein-like DOM both of terrestrial and aquatic origin seemed to drive bulk DOM patterns. Our study emphasizes the role of water residence time as a physical constraint for in-stream processes, and provides new insights into the key factors governing the net balance between in-stream gains and losses of DOM in rivers.
  •  
3.
  • Casas-Ruiz, Joan P., et al. (författare)
  • Drought-induced discontinuities in the source and degradation of dissolved organic matter in a Mediterranean river
  • 2016
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 127:1, s. 125-139
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition of dissolved organic matter (DOM) in rivers results from the different sources and in-stream transformations along the land to ocean aquatic continuum. Riverine DOM sources are highly dependent on the hydrological connection between the river channel and the surrounding terrestrial ecosystems, but how the lack of this connectivity (e.g., during drought episodes) affects the sources and biodegradation of DOM in rivers remains unclear. Here we identified the DOM sources as well as the different DOM pools that are respired along a Mediterranean river during drought by combining absorbance-fluorescence spectroscopy, size-exclusion chromatography, biodegradation assays, and stable and radiocarbon isotopes. DOM composition was highly heterogeneous along the river in response to different sources and in-stream processes in each distinct aquatic environment (i.e., isolated water pools, running waters, and impounded waters in weirs). The reduced hydrological connectivity with terrestrial ecosystems promoted the influence of autochthonous DOM sources. Still, tree leaves from overhanging canopies stood out as an important terrestrial DOM source, especially in sites where water residence time was high such as isolated pools and weirs. Degradation of leaf leachates was a relevant process in these sites, whereas autochthonous DOM and groundwater millennial DOM (> 1300 year B.P.) seemed to be degraded in running waters. Overall, our results highlight that the drought-induced hydrological disconnection entails a great spatial heterogeneity in the sources of DOM, which at the same time determines the different DOM pools that are respired in each environment along the river.
  •  
4.
  • Catalan, Nuria, et al. (författare)
  • Carbon dioxide efflux during the flooding phase of temporary ponds
  • 2014
  • Ingår i: LIMNETICA. - 0213-8409. ; 33:2, s. 349-359
  • Tidskriftsartikel (refereegranskat)abstract
    • Small water bodies, such as temporary ponds, have a high carbon processing potential. Nevertheless, despite the global occurrence of these systems, the carbon effluxes from such water bodies have been largely overlooked. In this study, we examined the intra- and intersystem variability of carbon dioxide (CO2) effluxes from a set of Mediterranean temporary ponds during the flooding phase, a hot-spot for biogeochemical cycling in temporary systems. The CO2 effluxes showed higher variability among the various sections of each pond (i.e., inundated, emerged-unvegetated and emerged-vegetated) than among the ponds. The emerged-vegetated sections showed the highest CO2 effluxes per unit area and tended to drive the total effluxes at the whole-ecosystem scale. The mean CO2 efflux (121.3 +/- 138.1 mmol m(-2) d(-1)) was in the upper range for freshwater ecosystems. The CO2 effluxes were not related to catchment properties but rather to the organic content of the sediments, especially in the emerged sections of the ponds. Our results indicate that temporary ponds, especially their emerged sections, are important sources of CO2 to the atmosphere, highlighting the need to include the dry phases of these and other temporary aquatic systems in regional carbon budgets.
  •  
5.
  • Catalan, Nuria, et al. (författare)
  • The relevance of environment vs. composition on dissolved organic matter degradation in freshwaters
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:2, s. 306-320
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic matter (DOM) composition exerts a direct control on its degradation and subsequent persistence in aquatic ecosystems. Yet, under certain conditions, the degradation patterns of DOM cannot be solely explained by its composition, highlighting the relevance of environmental conditions for DOM degradation. Here, we experimentally assessed the relative influence of composition vs. environment on DOM degradation by performing degradation bioassays using three contrasting DOM sources inoculated with a standardized bacterial inoculum under five distinct environments. The DOM degradation kinetics modeled using reactivity continuum models showed that composition was more important than environment in determining the bulk DOM decay patterns. Changes in DOM composition resulted from the interaction between DOM source and environment. The role of environment was stronger on shaping the bacterial community composition, but the intrinsic nature of the DOM source exerted stronger control on the DOM degradation function.
  •  
6.
  • Gómez-Gener, Lluís, et al. (författare)
  • Effect of small water retention structures on diffusive CO2 and CH4 emissions along a highly impounded river
  • 2018
  • Ingår i: Inland Waters. - : Taylor & Francis. - 2044-2041 .- 2044-205X. ; 8:4, s. 449-460
  • Tidskriftsartikel (refereegranskat)abstract
    • The impoundment of running waters through the construction of large dams is recognised as one of the most important factors determining the transport, transformation, and outgassing of carbon (C) in fluvial networks. However, the effects of small and very small water retention structures (SWRS) on the magnitude and spatiotemporal patterns of C emissions are still unknown, even though SWRS are the most common type of water retention structure causing river fragmentation worldwide. Here we evaluated and compared diffusive carbon dioxide (CO2) and methane (CH4) emissions from river sections impounded by SWRS and from their adjacent free-flowing sections along a highly impounded river. Emissions from impounded river sections (mean [SE] = 17.7 [2.8] and 0.67 [0.14] mmol m(-2)d(-1), for CO2 and CH4, respectively) never exceeded those from their adjacent free-flowing river sections (230.6 [49.7] and 2.14 [0.54] mmol m(-2)d(-1)). We attribute this finding to the reduced turbulence in impounded river sections induced by SWRS compared to free-flowing river sections (i.e., physical driver). Likewise, the presence of SWRS favoured an increase of the concentration of CH4 in impounded waters, but this increase was not sufficient to cause a significant influence in the CH4 efflux from the downstream free-flowing river sections. By contrast, this influenced the larger-scale longitudinal patterns of dissolved CH4, which exhibited a dear shifting pattern along the study stretch, modulated by variables associated with the presence of SWRS, such as higher water residence times, higher sedimentation rates, and higher temperatures. Overall, our results show that the presence of SWRS can modify the concentrations of C gases in highly impounded rivers but exerts a minor influence on diffusive C emissions.
  •  
7.
  • Gómez-Gener, Lluís, et al. (författare)
  • Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought
  • 2015
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 125:3, s. 409-426
  • Tidskriftsartikel (refereegranskat)abstract
    • During summer drought, Mediterranean fluvial networks are transformed into highly heterogeneous landscapes characterized by different environments (i.e., running and impounded waters, isolated river pools and dry beds). This hydrological setting defines novel biogeochemically active areas that could potentially increase the rates of carbon emissions from the fluvial network to the atmosphere. Using chamber methods, we aimed to identify hot spots for carbon dioxide (CO2) and methane (CH4) emissions from two typical Mediterranean fluvial networks during summer drought. The CO2 efflux from dry beds (mean ± SE = 209 ± 10 mmol CO2 m−2 d−1) was comparable to that from running waters (120 ± 33 mmol m−2 d−1) and significantly higher than from impounded waters (36.6 ± 8.5 mmol m−2 d−1) and isolated pools (17.2 ± 0.9 mmol m−2 d−1). In contrast, the CH4 efflux did not significantly differ among environments, although the CH4 efflux was notable in some impounded waters (13.9 ± 10.1 mmol CH4 m−2 d−1) and almost negligible in the remaining environments (mean <0.3 mmol m−2 d−1). Diffusion was the only mechanism driving CO2 efflux in all environments and was most likely responsible for CH4 efflux in running waters, isolated pools and dry beds. In contrast, the CH4 efflux in impounded waters was primarily ebullition-based. Using a simple heuristic approach to simulate potential changes in carbon emissions from Mediterranean fluvial networks under future hydrological scenarios, we show that an extreme drying out (i.e., a four-fold increase of the surface area of dry beds) would double the CO2 efflux from the fluvial network. Correspondingly, an extreme transformation of running waters into impounded waters (i.e., a twofold increase of the surface area of impounded waters) would triple the CH4 efflux. Thus, carbon emissions from dry beds and impounded waters should be explicitly considered in carbon assessments of fluvial networks, particularly under predicted global change scenarios, which are expected to increase the spatial and temporal extent of these environments.
  •  
8.
  • Gomez-Gener, Lluis, et al. (författare)
  • When Water Vanishes : Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams
  • 2016
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 19:4, s. 710-723
  • Tidskriftsartikel (refereegranskat)abstract
    • Most fluvial networks worldwide include watercourses that recurrently cease to flow and run dry. The spatial and temporal extent of the dry phase of these temporary watercourses is increasing as a result of global change. Yet, current estimates of carbon emissions from fluvial networks do not consider temporary watercourses when they are dry. We characterized the magnitude and variability of carbon emissions from dry watercourses by measuring the carbon dioxide (CO2) flux from 10 dry streambeds of a fluvial network during the dry period and comparing it to the CO2 flux from the same streambeds during the flowing period and to the CO2 flux from their adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by examining the main physical and chemical properties of dry streambed sediments and adjacent upland soils. The CO2 efflux from dry streambeds (mean +/- A SD = 781.4 +/- A 390.2 mmol m(-2) day(-1)) doubled the CO2 efflux from flowing streambeds (305.6 +/- A 206.1 mmol m(-2) day(-1)) and was comparable to the CO2 efflux from upland soils (896.1 +/- A 263.2 mmol m(-2) day(-1)). However, dry streambed sediments and upland soils were physicochemically distinct and differed in the variables regulating their CO2 efflux. Overall, our results indicate that dry streambeds constitute a unique and biogeochemically active habitat that can emit significant amounts of CO2 to the atmosphere. Thus, omitting CO2 emissions from temporary streams when they are dry may overlook the role of a key component of the carbon balance of fluvial networks.
  •  
9.
  • Marcé, Rafael, et al. (författare)
  • Emissions from dry inland waters are a blind spot in the global carbon cycle
  • 2019
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 188, s. 240-248
  • Forskningsöversikt (refereegranskat)abstract
    • A large part of the world's inland waters, including streams, rivers, ponds, lakes and reservoirs is subject to occasional, recurrent or even permanent drying. Moreover, the occurrence and intensity of drying events are increasing in many areas of the world because of climate change, water abstraction, and land use alteration. Yet, information on the gaseous carbon (C) fluxes from dry inland waters is scarce, thus precluding a comprehensive assessment of C emissions including all, also intermittently dry, inland waters. Here, we review current knowledge on gaseous C fluxes from lotic (streams and rivers) and lentic (ponds, lakes, and reservoirs) inland waters during dry phases and the response to rewetting, considering controls and sources as well as implications of including 'dry' fluxes for local and global scale estimates. Moreover, knowledge gaps and research needs are discussed. Our conservative estimates indicate that adding emissions from dry inland waters to current global estimates of CO2 emissions from inland waters could result in an increase of 0.22 Pg C year(-1), or similar to 10% of total fluxes. We outline the necessary conceptual understanding to successfully include dry phases in a more complete picture of inland water C emissions and identify potential implications for global C cycle feedbacks.
  •  
10.
  • Obrador, Biel, et al. (författare)
  • Dry habitats sustain high CO2 emissions from temporary ponds across seasons
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the increasing understanding of the magnitude and drivers of carbon gas emissions from inland waters, the relevance of water fluctuation and associated drying on their dynamics is rarely addressed. Here, we quantified CO2 and CH4 fluxes from a set of temporary ponds across seasons. The ponds were in all occasion net CO2 emitters irrespective of the presence or absence of water. While the CO2 fluxes were in the upper range of emissions for freshwater lentic systems, CH4 fluxes were mostly undetectable. Dry habitats substantially contributed to these emissions and were always a source of CO2, whereas inundated habitats acted either as a source or a sink of atmospheric CO2 along the year. Higher concentrations of coloured and humic organic matter in water and sediment were linked to higher CO2 emissions. Composition of the sediment microbial community was related both to dissolved organic matter concentration and composition, but we did not find a direct link with CO2 fluxes. The presence of methanogenic archaea in most ponds suggested the potential for episodic CH4 production and emission. Our results highlight the need for spatially and temporally inclusive approaches that consider the dry phases and habitats to characterize carbon cycling in temporary systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
von Schiller, Daniel (11)
Obrador, Biel (10)
Catalán, Núria (9)
Gomez-Gener, Lluis (9)
Casas-Ruiz, Joan Per ... (2)
Casas-Ruiz, Joan P. (2)
visa fler...
Mendoza-Lera, Clara (1)
Datry, Thibault (1)
Gutiérrez, Carmen (1)
Barros, Nathan (1)
Kosten, Sarian (1)
Kothawala, Dolly (1)
Lundeberg, Joakim (1)
Little, Chelsea J. (1)
Sobek, Sebastian (1)
van den Berge, Maart ... (1)
Paranaíba, José R. (1)
Linkhorst, Annika (1)
Mendonça, Raquel (1)
Quadra, Gabrielle (1)
Roland, Fábio (1)
Luecken, Malte D. (1)
Rojas, Mauricio (1)
Grossart, Hans-Peter (1)
Borrego, Carles M (1)
Proia, Lorenzo (1)
Pastor, Ada (1)
Cauvy-Fraunie, Sophi ... (1)
Hawkes, Jeffrey A. (1)
Sheppard, Dean (1)
Figueroa, Ricardo (1)
Horvath, Peter (1)
Sun, Xin (1)
Gessner, Mark O. (1)
Xu, Yan (1)
Bosse, Yohan (1)
Timens, Wim (1)
Singer, Gabriel (1)
Graca, Manuel A. S. (1)
Pere Casas-Ruiz, Joa ... (1)
Barbry, Pascal (1)
McIntosh, Angus (1)
Brothers, Soren (1)
Bruder, Andreas (1)
Bui, Linh T. (1)
Zaragosi, Laure Emma ... (1)
Burrows, Ryan (1)
Eickelberg, Oliver (1)
Finlayson, Colin M. (1)
Carlson, Stephanie M ... (1)
visa färre...
Lärosäte
Uppsala universitet (8)
Umeå universitet (4)
Kungliga Tekniska Högskolan (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy