SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(LANTBRUKSVETENSKAPER) hsv:(Bioteknologi med applikationer på växter och djur) hsv:(Växtbioteknologi) "

Sökning: hsv:(LANTBRUKSVETENSKAPER) hsv:(Bioteknologi med applikationer på växter och djur) hsv:(Växtbioteknologi)

  • Resultat 1-10 av 756
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munthe, Christian, 1962 (författare)
  • Precaution and Ethics: Handling risks, uncertainties and knowledge gaps in the regulation of new biotechnologies
  • 2017
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • This volume outlines and analyses ethical issues actualized by applying a precautionary approach to the regulation of new biotechnologies. It presents a novel way of categorizing and comparing biotechnologies from a precautionary standpoint. Based on this, it addresses underlying philosophical problems regarding the ethical assessment of decision-making under uncertainty and ignorance, and discusses how risks and possible benefits of such technologies should be balanced from an ethical standpoint. It argues on conceptual and ethical grounds for a technology neutral regulation as well as for a regulation that not only checks new technologies but also requires old, inferior ones to be phased out. It demonstrates how difficult ethical issues regarding the extent and ambition of precautionary policies need to be handled by such a regulation, and presents an overarching framework for doing so.
  •  
2.
  • Schrader, J., et al. (författare)
  • Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome
  • 2004
  • Ingår i: The Plant Journal. - Malden : Wiley-Blackwell. - 0960-7412 .- 1365-313X. ; 40:2, s. 173-187
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment of the dormant state in meristems involves considerable physiological and metabolic alterations necessary for surviving unfavourable growth conditions. However, a global molecular analysis of dormancy in meristems has been hampered by the difficulty in isolating meristem cells. We used cryosectioning to isolate purified cambial meristem cells from the woody plant Populus tremula during active growth and dormancy. These samples were used to generate meristem-specific cDNA libraries and for cDNA microarray experiments to define the global transcriptional changes underlying cambial dormancy. The results indicate a significant reduction in the complexity of the cambial transcriptome in the dormant state. Although cell division is terminated in the dormant cambium, the cell cycle machinery appears to be maintained in a skeletal state as suggested by the continued presence of transcripts for several cell cycle regulators. The downregulation of PttPIN1 and PttPIN2 transcripts explains the reduced basipetal polar auxin transport during dormancy. The induction of a member of the SINA family of ubiquitin ligases implicated in auxin signalling indicates a potential mechanism for modulation of auxin sensitivity during cambial dormancy. The metabolic alterations during dormancy are mirrored in the induction of genes involved in starch breakdown and the glyoxysomal cycle. Interestingly, the induction of RGA1 like gene suggests modification of gibberellin signalling in cambial dormancy. The induction of genes such as poplar orthologues of FIE and HAP2 indicates a potential role for these global regulators of transcription in orchestrating extensive changes in gene expression during dormancy.
  •  
3.
  • Sweetlove, Lee J., et al. (författare)
  • Engineering central metabolism – a grand challenge for plant biologists
  • 2017
  • Ingår i: Plant Journal. - : Wiley. - 0960-7412 .- 1365-313X. ; 90:4, s. 749-763
  • Tidskriftsartikel (refereegranskat)abstract
    • The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative ‘design-build-test-learn’ cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered.
  •  
4.
  • Abebe, Admas Alemu, et al. (författare)
  • Genomic selection in plant breeding: key factors shaping two decades of progress
  • 2024
  • Ingår i: Molecular Plant. - 1674-2052 .- 1752-9867. ; 17, s. 552-578
  • Forskningsöversikt (refereegranskat)abstract
    • Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP—theoretically reaching one when using the Pearson’s correlation as a metric—is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.
  •  
5.
  • Abreha, Kibrom Berhe, et al. (författare)
  • Understanding the Sorghum–Colletotrichum sublineola interactions for enhanced host resistance
  • 2021
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Improving sorghum resistance is a sustainable method to reduce yield losses due to anthracnose, a devastating disease caused by Colletotrichum sublineola. Elucidating the molecular mechanisms of sorghum–C. sublineola interactions would help identify biomarkers for rapid and efficient identification of novel sources for host-plant resistance improvement, understanding the pathogen virulence, and facilitating resistance breeding. Despite concerted efforts to identify resistance sources, the knowledge about sorghum–anthracnose interactions remains scanty. Hence, in this review, we presented an overview of the current knowledge on the mechanisms of sorghum-C. sublineola molecular interactions, sources of resistance for sorghum breeding, quantitative trait loci (QTL), and major (R-) resistance gene sequences as well as defense-related genes associated with anthracnose resistance. We summarized current knowledge about C. sublineola populations and its virulence. Illustration of the sorghum-C. sublineola interaction model based on the current understanding is also provided. We highlighted the importance of genomic resources of both organisms for integrated omics research to unravel the key molecular components underpinning compatible and incompatible sorghum–anthracnose interactions. Furthermore, sorghum-breeding strategy employing rapid sorghum germplasm screening, systems biology, and molecular tools is presented.
  •  
6.
  • Ahmadi Afzadi, Masoud (författare)
  • Genetic variation in resistance to fungal storage diseases in apple : inoculation-based screening, transcriptomics and biochemistry
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Apple is one of the economically and culturally most important fruit crops and has many health-related benefits. Apple production is, however, sensitive to several fungal diseases including blue mold, caused by Penicillium expansum. Problems are more pronounced in organic production or in countries where postharvest application of fungicides is prohibited. To limit or overcome this problem, many studies have been focused on investigations of the mechanism of resistance/tolerance. No major gene(s) have as yet been identified, but quantitatively inherited traits, some of which are related to fruit texture and content of chemical compounds, have been shown to affect the ability of cultivars to withstand storage diseases. In the present thesis, inter-cultivar variation in terms of resistance to fungal storage diseases was investigated at two locations, i.e. Balsgård in Sweden and Njøs in Norway. The association of harvest date, fruit firmness and softening with lesion decay was investigated on large sets of cultivars. The contribution of four fruit texture-related genes (Md-ACO1, Md-ACS1, Md-Exp7 and Md-PG1) in explaining the fruit texture characteristics was examined. Fruit content of chemical compounds with a potential impact on disease resistance was also investigated, and finally the regulation of apple genes upon fungal infection was studied in order to identify candidate genes responsible for disease resistance. Inoculation-based screening indicated large variation across the investigated cultivars in terms of blue mold and bitter rot susceptibility. Harvest date and softening rate of fruits during storage had a large impact on resistance to fungal diseases, thus cultivars with moderate to firm fruits that soften comparatively little during storage could withstand the fungal infection comparatively well. Softening rate is, in its turn, closely associated with harvest date whereas four fruit texture-related genes had lower predictive power than expected. Quantifying the chemical compounds in the fruit samples revealed that some of these compounds, especially flavonols and procyanidin B2, could contribute to resistance against blue mold, whereas contents of malic acids or total titratable acidity had considerably less impact. Differential expression of FLS, LDOX, and CHS genes involved in biosynthesis of flavonoids and PGIP, TT10, WAK1 and CTL1 genes related to cell wall structure indicate the importance of fruit characteristics and biochemical compounds in the resistance mechanism.
  •  
7.
  • Alexandersson, Erik, et al. (författare)
  • Tro får inte ersätta vetenskap
  • 2014
  • Ingår i: Svenska dagbladet. - 1101-2412.
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
8.
  • Andersson, Mariette (författare)
  • Comparative Transcriptome Analysis of Three Oil Palm Fruit and Seed Tissues That Differ in Oil Content and Fatty Acid Composition
  • 2013
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 162, s. 1337-1358
  • Tidskriftsartikel (refereegranskat)abstract
    • Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis.
  •  
9.
  • Andersson, Mariette, et al. (författare)
  • Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery
  • 2018
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 164, s. 378-384
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein-9 (CRISPR-Cas9) can be used as an efficient tool for genome editing in potato (Solanum tuberosum). From both a scientific and a regulatory perspective, it is beneficial if integration of DNA in the potato genome is avoided. We have implemented a DNA-free genome editing method, using delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to potato protoplasts, by targeting the gene encoding a granule bound starch synthase (GBSS, EC 2.4.1.242). The RNP method was directly implemented using previously developed protoplast isolation, transfection and regeneration protocols without further adjustments. Cas9 protein was preassembled with RNA produced either synthetically or by in vitro transcription. RNP with synthetically produced RNA (cr-RNP) induced mutations, i.e. indels, at a frequency of up to 9%, with all mutated lines being transgene-free. A mutagenesis frequency of 25% of all regenerated shoots was found when using RNP with in vitro transcriptionally produced RNA (IVT-RNP). However, more than 80% of the shoots with confirmed mutations had unintended inserts in the cut site, which was in the same range as when using DNA delivery. The inserts originated both from DNA template remnants from the in vitro transcription, and from chromosomal potato DNA. In 2-3% of the regenerated shoots from the RNP-experiments, mutations were induced in all four alleles resulting in a complete knockout of the GBSS enzyme function.
  •  
10.
  • Andreasson, Erik, et al. (författare)
  • Insights on cisgenic plants with durable disease resistance under the European Green Deal
  • 2023
  • Ingår i: Trends in Biotechnology. - 0167-7799 .- 1879-3096. ; 41, s. 1027-1040
  • Forskningsöversikt (refereegranskat)abstract
    • Significant shares of harvests are lost to pests and diseases, therefore, minimizing these losses could solve part of the supply constraints to feed the world. Cisgenesis is defined as the insertion of genetic material into a recipient organism from a donor that is sexually compatible. Here, we review (i) conventional plant breeding, (ii) cisgenesis, (iii) current pesticide-based disease management, (iv) potential economic implications of cultivating cisgenic crops with durable disease resistances, and (v) potential environmental implications of cultivating such crops; focusing mostly on potatoes, but also apples, with resistances to Phytophthora infestans and Venturia inaequalis, respectively. Adopting cisgenic varieties could provide benefits to farmers and to the environment through lower pesticide use, thus contributing to the European Green Deal target.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 756
Typ av publikation
tidskriftsartikel (494)
doktorsavhandling (67)
forskningsöversikt (62)
annan publikation (42)
konferensbidrag (38)
bokkapitel (32)
visa fler...
rapport (12)
bok (4)
patent (4)
konstnärligt arbete (1)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (580)
övrigt vetenskapligt/konstnärligt (142)
populärvet., debatt m.m. (34)
Författare/redaktör
Ortiz Rios, Rodomiro ... (61)
Sundström, Jens (21)
Zhu, Li-Hua (20)
Imran, Qari Muhammad (19)
Hofvander, Per (19)
Stymne, Sten (17)
visa fler...
Yun, Byung-Wook (16)
Dixelius, Christina (16)
Andreasson, Erik (15)
Mellerowicz, Ewa (15)
Ljung, Karin (14)
Jönsson, Leif J (14)
Andersson, Mariette (14)
Bejai, Sarosh (13)
Dida, Mulatu Geleta (13)
Bozhkov, Peter (12)
Hussain, Adil (11)
Mun, Bong-Gyu (11)
Lee, Sang-Uk (10)
Meijer, Johan (9)
Nielsen, Jens B, 196 ... (9)
Moritz, Thomas (8)
Carlsson, Anders (8)
Bulone, Vincent (8)
Sun, Chuanxin (8)
Bhalerao, Rishikesh ... (8)
Gyllenstrand, Niclas (7)
Chawade, Aakash (7)
Ramesh, Vetukuri (7)
Nadeau, Elisabet (7)
Funk, Christiane (7)
Åhman, Inger (7)
Siewers, Verena, 197 ... (7)
Lee, In-Jung (7)
Trygg, Johan (6)
Karlsson, Magnus (6)
Berggren, Magnus (6)
Von Arnold, Sara (6)
Clapham, David (6)
Sundberg, Björn (6)
Fagerström,, Torbjör ... (6)
Delhomme, Nicolas (6)
Street, Nathaniel, 1 ... (6)
Ekelöf, Joakim (6)
Lenman, Marit (6)
Jensen, Dan Funck (6)
Moschou, Panagiotis ... (6)
Vilaplana, Francisco ... (6)
Sitbon, Folke (6)
Svensson, Sven-Erik (6)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (538)
Umeå universitet (119)
Kungliga Tekniska Högskolan (77)
Chalmers tekniska högskola (38)
Lunds universitet (35)
Uppsala universitet (30)
visa fler...
Stockholms universitet (25)
Göteborgs universitet (21)
Örebro universitet (15)
Linköpings universitet (14)
RISE (10)
Högskolan i Skövde (5)
Linnéuniversitetet (4)
Högskolan i Halmstad (3)
Karolinska Institutet (2)
Luleå tekniska universitet (1)
Malmö universitet (1)
Karlstads universitet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (710)
Svenska (41)
Spanska (4)
Danska (1)
Forskningsämne (UKÄ/SCB)
Lantbruksvetenskap (756)
Naturvetenskap (309)
Teknik (46)
Samhällsvetenskap (16)
Humaniora (12)
Medicin och hälsovetenskap (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy