SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Basic Medicine) hsv:(Immunology in the medical area) "

Sökning: hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Basic Medicine) hsv:(Immunology in the medical area)

  • Resultat 1-10 av 5422
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mottahedin, Amin (författare)
  • Developing brain and systemic inflammation: a "Toll-like" link with consequences
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The developing brain is vulnerable to external insults, and perinatal brain injury (PBI) is a major cause of life-long neurological syndromes such as cerebral palsy. Currently, no pharmaceutical intervention is available. Hypoxia/ischemia (HI), infections and inflammation are implicated in the pathogenesis of PBI. However, the crosstalk between these etiologies is not fully understood. Toll-like receptors (TLR) 3 and TLR2 are responsible for sensing viral and bacterial infections and initiating the inflammatory response. The aim of this thesis was to investigate the effect of systemic inflammation induced by activation of these TLRs on neonatal HI brain injury. We demonstrate that intraperitoneal administration of TLR3 and TLR2 ligands (PolyI:C and P3C, respectively) prior to HI increases the brain injury in neonatal mice. PolyI:C and P3C induced neuroinflammation and altered microglial phenotype as assessed by RT-qPCR, multiplex cytokine assay or flow cytometry. PolyI:C also upregulated the pro-apoptotic gene, Fasl, expression and reduced activation of pro-survival signaling molecule Akt. On the other hand, P3C suppressed mitochondrial respiration, a major mechanism of cellular energy production. P3C, unlike other TLR agonists, induced marked infiltration of leukocytes to the cerebral spinal fluid and brain of neonatal mice and rats. Confocal microscopy, Cre recombinase-mediated gene targeting and in vitro cell transmigra-tion assay revealed the choroid plexus as a site of leukocyte entry. RNA sequencing of the choroid plexus followed by transcriptome cluster analysis and Ingenuity Pathway Analysis revealed potential mechanisms of leukocyte infiltration, including a specific chemotaxis signature and cytoskeleton-related pathways. Finally, we show that N-acetylcysteine treatment inhibits TLR2-mediated leukocyte trafficking in vivo and in vitro. To conclude, this thesis describe a TLR-mediated link between systemic inflammation and developing brain with detrimental consequences on HI brain injury, suggesting potential novel therapeutic strategies.
  •  
2.
  • Liu, Yawei, et al. (författare)
  • Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE.
  • 2006
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 12:5, s. 518-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1–TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between neurons and T cells results in the conversion of encephalitogenic T cells to CD25+TGF-beta1+CTLA-4+FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4 but not TGF-beta1. Autocrine action of TGF-beta1, however, is important for the proliferative arrest of Treg cells. Blocking the B7 and TGF-beta pathways prevents the CNS-specific generation of Treg cells. These findings show that generation of neuron-dependent Treg cells in the CNS is instrumental in regulating CNS inflammation.
  •  
3.
  • Bhandage, Amol K., 1988- (författare)
  • Glutamate and GABA signalling components in the human brain and in immune cells
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Glutamate and γ-aminobutyric acid (GABA) are the principal excitatory and inhibitory neurotransmitters in the central nervous system (CNS). They both can activate their ionotropic and metabotropic receptors. Glutamate activates ionotropic glutamate receptors (iGlu - AMPA, kainate and NMDA receptors) and GABA activates GABA-A receptors which are modulated by many types of drugs and substances including alcohol. Using real time quantitative polymerase chain reaction, I have shown that iGlu and/or GABA-A receptor subunits were expressed in the hippocampus dentate gyrus (HDG), orbitofrontal cortex (OFC), dorsolateral prefrontal cortex (DL-PFC), central amygdala (CeA), caudate and putamen of the human brain and their expression was altered by chronic excessive alcohol consumption. It indicates that excitatory and inhibitory neurotransmission may have been altered in the brain of human alcoholics. It is possible that changes in one type of neurotransmitter system may drive changes in another. These brain regions also play a role in brain reward system. Any changes in them may lead to changes in the normal brain functions.Apart from the CNS, glutamate and GABA are also present in the blood and can be synthesised by pancreatic islet cells and immune cells. They may act as immunomodulators of circulating immune cells and can affect immune function through glutamate and GABA receptors. I found that T cells from human, rat and mouse lymph nodes expressed the mRNAs and proteins for specific GABA-A receptor subunits. GABA-evoked transient and tonic currents recorded using the patch clamp technique demonstrate the functional GABA-A channel in T cells. Furthermore, the mRNAs for specific iGlu, GABA-A and GABA-B receptor subunits and chloride cotransporters were detected in peripheral blood mononuclear cells (PBMCs) from men, non-pregnant women, healthy and depressed pregnant women. The results indicate that the expression of iGlu, GABA-A and GABA-B receptors is related to gender, pregnancy and mental health and support the notion that glutamate and GABA receptors may modulate immune function. Intra- and interspecies variability exists in the expression and it is further influenced by physiological conditions.
  •  
4.
  •  
5.
  • Rodríguez-Piñeiro, Ana María, et al. (författare)
  • The colonic mucus protection depends on the microbiota
  • 2015
  • Ingår i: Gut microbes. - : Informa UK Limited. - 1949-0976 .- 1949-0984. ; 6:5, s. 326-30
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The intestinal mucus is a pivotal part of our intestinal protection. It provides slow diffusion of protective molecules, trapping of luminal material as bacteria and smooth transport in the small intestine. In colon it restricts bacterial access to the epithelium limiting the responses to the enormous bacterial load present at this location. The development of these systems depends on the microbiota composition as seen in our recent study comparing the mucus phenotype in 2 colonies kept in different husbandries within the same SPF animal facility. One colony had impenetrable colonic mucus while the other colony had more penetrable mucus. The mucus phenotypes were transmitted via the microbiota and clear differences in its composition could be detected. Candidates associated with the different colonies were identified but the observed mucus difference could not be assigned to a specific bacterium.
  •  
6.
  • Fritz, Michael, 1981-, et al. (författare)
  • Interferon-ɣ mediated signaling in the brain endothelium is critical for inflammation-induced aversion
  • 2018
  • Ingår i: Brain, behavior, and immunity. - Maryland Heights : Academic Press. - 0889-1591 .- 1090-2139. ; 67, s. 54-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation elicits malaise and a negative affective state. The mechanism underpinning the aversive component of inflammation include cerebral prostaglandin synthesis and modulation of dopaminergic reward circuits, but the messengers that mediate the signaling between the peripheral inflammation and the brain have not been sufficiently characterized. Here we investigated the role of interferon-ɣ (IFN-ɣ) in the aversive response to systemic inflammation induced by a low dose (10μg/kg) of lipopolysaccharide (LPS) in mice. LPS induced IFN-ɣ expression in the blood and deletion of IFN-ɣ or its receptor prevented the development of conditioned place aversion to LPS. LPS induced expression of the chemokine Cxcl10 in the striatum of normal mice, but this induction was absent in mice lacking IFN-ɣ receptors or Myd88 in blood brain barrier endothelial cells. Furthermore, inflammation-induced aversion was blocked in mice lacking Cxcl10 or its receptor Cxcr3. Finally, mice with a selective deletion of the IFN-ɣ receptor in brain endothelial cells did not develop inflammation-induced aversion, demonstrating that the brain endothelium is the critical site of IFN-ɣ action. Collectively, these findings show that circulating IFN-ɣ that binds to receptors on brain endothelial cells and induces Cxcl10, is a central link in the signaling chain eliciting inflammation-induced aversion.
  •  
7.
  • Klawonn, Anna, 1985- (författare)
  • Molecular Mechanisms of Reward and Aversion
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Various molecular pathways in the brain shape our understanding of good and bad, as well as our motivation to seek and avoid such stimuli. This work evolves around how systemic inflammation causes aversion; and why general unpleasant states such as sickness, stress, pain and nausea are encoded by our brain as undesirable; and contrary to these questions, how drugs of abuse can subjugate the motivational neurocircuitry of the brain. A common feature of these various disease states is involvement of the motivational neurocircuitry - from mesolimbic to striatonigral pathways. Having an intact motivational system is what helps us evade negative outcomes and approach natural positive reinforcers, which is essential for our survival. During disease-states the motivational neurocircuitry may be overthrown by the molecular mechanisms that originally were meant to aid us.In study I, to investigate how inflammation is perceived as aversive, we used a behavioral test based on Pavlovian place conditioning with the aversive inflammatory stimulus E. coli lipopolysaccharide (LPS). Using a combination of cell-type specific gene deletions, pharmacology, and chemogenetics, we uncovered that systemic inflammation triggered aversion by MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E2 (PGE2) synthesis. Moreover, we showed that inflammation-induced PGE2 targeted EP1 receptors on striatal dopamine D1 receptor–expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, inflammation-induced aversion was not an indirect consequence of fever or anorexia but constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE2-mediated modulation of the dopaminergic circuitry is a key mechanism underlying inflammation-induced aversion.In study II, we investigate the role of peripheral IFN-γ in LPS induced conditioned place aversion by employing a strategy based on global and cell-type specific gene deletions, combined with measures of gene-expression. LPS induced IFN-ɣ expression in the blood, and deletion of IFN-ɣ or its receptor prevented conditioned place aversion (CPA) to LPS. LPS increased the expression of chemokine Cxcl10 in the striatum of normal mice. This induction was absent in mice lacking IFN-ɣ receptors or Myd88 in blood brain barrier endothelial cells. Furthermore, inflammation-induced aversion was blocked in mice lacking Cxcl10 or its receptor Cxcr3. Finally, mice with a selective deletion of the IFN-ɣ receptor in brain endothelial cells did not develop inflammation-induced aversion. Collectively, these findings demonstrate that circulating IFN-ɣ binding to receptors on brain endothelial cells which induces Cxcl10, is a central link in the signaling chain eliciting inflammation-induced aversion.In study III, we explored the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice in CPA to various stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain and kappa opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference towards most of the aversive stimuli, but were indifferent to pain. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine-dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were re-expressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in a MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.The neurotransmitter acetylcholine has been implied in reward learning and drug addiction. However, the role of cholinergic receptor subtypes in such processes remains elusive. In study IV we investigated the function of muscarinic M4Rs on dopamine D1R expressing neurons and acetylcholinergic neurons, using transgenic mice in various reward-enforced behaviors and in a “waiting”-impulsivity test. Mice lacking M4-receptors from D1-receptor expressing neurons exhibited an escalated reward seeking phenotype towards cocaine and natural reward, in Pavlovian conditioning and an operant self-administration task, respectively. In addition, the M4-D1RCre mice showed impaired waiting impulsivity in the 5-choice-serial-reaction-time-task. On the contrary, mice without M4Rs in acetylcholinergic neurons were unable to learn positive reinforcement to natural reward and cocaine, in an operant runway paradigm and in Pavlovian conditioning.  Immediate early gene expression mirrored the behavioral findings arising from M4R-D1R knockout, as cocaine induced cFos and FosB was significantly increased in the forebrain of M4-D1RCre mice, whereas it remained normal in the M4R-ChatCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality.
  •  
8.
  • Johansson, Staffan, 1976, et al. (författare)
  • Mechanistic Proposal for the Formation of Specific Immunogenic Complexes via a Radical Pathway: A Key Step in Allergic Contact Dermatitis to Olefinic Hydroperoxides
  • 2009
  • Ingår i: Chem. Res. Toxicol.. - : American Chemical Society (ACS). - 0893-228X .- 1520-5010. ; 22:11, s. 1774-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • The widespread use of scented products causes an increase of allergic contact dermatitis to fragrance compounds in Western countries today. Many fragrance compounds are prone to autoxidation, forming hydroperoxides as their primary oxidation products. Hydroperoxides are known to be strong allergens and to form specific immunogenic complexes. However, the mechanisms for the formation of the immunogenic complexes are largely unknown. We have investigated this mechanism for (5R)-5-isopropenyl-2-methyl-2-cyclohexene-1-hydroperoxide (Lim-2-OOH) by studying the formation of adducts in the reaction between this hydroperoxide and 5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)TPPCl) in the presence of protected cysteine (NAc-Cys-OMe) or glutathione (GSH). Isolated adducts originate from the addition of the thiol group of NAc-Cys-OMe over the carbon−carbon double bonds of carvone. Furthermore, adducts between NAc-Cys-OMe and carveol as well as between GSH and carvone have been identified. The formation of these adducts most likely proceeds via the radical thiol−ene mechanism. The addition of a terpene moiety to cysteine offers an explanation of the specificity of the immune response to structurally different hydroperoxides. These results also explain the lack of cross-reactivity between carvone and Lim-2-OOH. In conclusion, we propose that immunogenic complexes of olefinic hydroperoxides can be formed via the radical thiol−ene mechanism. These complexes will be specific for the individual olefinic hydroperoxides due to the inclusion of a terpene moiety derived from the hydroperoxide.
  •  
9.
  • Hammarlund, Maria, et al. (författare)
  • The selectivealpha7 nicotinic acetylcholine receptor agonist AR‑R17779 does not affect ischemia-reperfusion brain injury in mice.
  • 2021
  • Ingår i: Bioscience reports. - 1573-4935. ; 41:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation plays a central role in stroke-induced brain injury. The alpha7 nicotinic acetylcholine receptor (α7nAChR) can modulate immune responses in both the periphery and the brain. The aims of this study were to investigate α7nAChR expression in different brain regions and evaluate the potential effect of the selective α7nAChR agonist AR-R17779 on ischemia-reperfusion brain injury in mice. Droplet digital PCR (ddPCR) was used to evaluate the absolute expression of the gene encoding α7nAChR (Chrna7) in hippocampus, striatum, thalamus and cortex in adult, naïve mice. Mice subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery were treated with α7nAChR agonist AR-R17779 (12 mg/kg) or saline once daily for five days. Infarct size and microglial activation seven days after tMCAO were analyzed using immunohistochemistry. Chrna7 expression was found in all analyzed brain regions in naïve mice, with the highest expression in cortex and hippocampus. At sacrifice, white blood cell count was significantly decreased in AR-R17779 treated mice compared with saline controls in the sham groups, although, no effect was seen in the tMCAO groups. Brain injury and microglial activation was evident seven days after tMCAO. However, no difference was found between mice treated with saline or AR‑R17779. In conclusion, α7nAChR expression varies in different brain regions and, despite a decrease in white blood cells in sham mice receiving AR-R17779, this compound does not affect stroke-induced brain injury.
  •  
10.
  • Venkatakrishnan, Vignesh, 1987, et al. (författare)
  • Novel inhibitory effect of galectin-3 on the respiratory burst induced by Staphylococcus aureus in human neutrophils
  • 2023
  • Ingår i: Glycobiology. - : OXFORD UNIV PRESS INC. - 1460-2423 .- 0959-6658. ; 33:6, s. 503-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the responders to microbial invasion, neutrophils represent the earliest and perhaps the most important immune cells that contribute to host defense with the primary role to kill invading microbes using a plethora of stored anti-microbial molecules. One such process is the production of reactive oxygen species (ROS) by the neutrophil enzyme complex NADPH-oxidase, which can be assembled and active either extracellularly or intracellularly in phagosomes (during phagocytosis) and/or granules (in the absence of phagocytosis). One soluble factor modulating the interplay between immune cells and microbes is galectin-3 (gal-3), a carbohydrate-binding protein that regulates a wide variety of neutrophil functions. Gal-3 has been shown to potentiate neutrophil interaction with bacteria, including Staphylococcus aureus, and is also a potent activator of the neutrophil respiratory burst, inducing large amounts of granule-localized ROS in primed cells. Herein, the role of gal-3 in regulating S. aureus phagocytosis and S. aureus-induced intracellular ROS was analyzed by imaging flow cytometry and luminol-based chemiluminescence, respectively. Although gal-3 did not interfere with S. aureus phagocytosis per se, it potently inhibited phagocytosis-induced intracellular ROS production. Using the gal-3 inhibitor GB0139 (TD139) and carbohydrate recognition domain of gal-3 (gal-3C), we found that the gal-3-induced inhibitory effect on ROS production was dependent on the carbohydrate recognition domain of the lectin. In summary, this is the first report of an inhibitory role of gal-3 in regulating phagocytosis-induced ROS production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 5422
Typ av publikation
tidskriftsartikel (4268)
doktorsavhandling (419)
forskningsöversikt (314)
konferensbidrag (256)
bokkapitel (78)
annan publikation (73)
visa fler...
licentiatavhandling (9)
patent (2)
rapport (1)
bok (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (4579)
övrigt vetenskapligt/konstnärligt (829)
populärvet., debatt m.m. (14)
Författare/redaktör
Borrebaeck, Carl (160)
Holmdahl, Rikard (143)
Ohlin, Mats (125)
Nilsson Ekdahl, Kris ... (107)
Nilsson, Bo (106)
Blom, Anna (103)
visa fler...
Wingren, Christer (89)
Leffler, Hakon (68)
Pejler, Gunnar (67)
James, Peter (64)
Svanborg, Catharina (61)
Nandakumar, Kutty Se ... (61)
Truedsson, Lennart (55)
Agace, William (55)
Karlsson, Anna, 1967 (53)
Riesbeck, Kristian (51)
Wold, Agnes E, 1955 (51)
Lötvall, Jan, 1956 (50)
Lundbäck, Bo, 1948 (50)
Herwald, Heiko (47)
Egesten, Arne (47)
Korsgren, Olle (46)
Lycke, Nils Y, 1954 (45)
Lindstedt, Malin (43)
Essand, Magnus (43)
Bemark, Mats, 1967 (43)
Holmgren, Jan, 1944 (42)
Levander, Fredrik (40)
Mörgelin, Matthias (39)
Blom, Anna M. (39)
Dahlgren, Claes, 194 ... (38)
Erjefält, Jonas (37)
Heyman, Birgitta (37)
Yrlid, Ulf, 1971 (36)
Ekwall, Olov, 1968 (36)
Fasth, Anders, 1945 (33)
Lernmark, Åke (32)
Nilsson, Ulf (31)
Nilsson, Peter (31)
Wennergren, Göran, 1 ... (31)
Ekerljung, Linda, 19 ... (31)
Rudin, Anna, 1961 (31)
Ellmark, Peter (30)
Bokarewa, Maria, 196 ... (30)
Rönnelid, Johan (30)
Hellstrand, Kristoff ... (29)
Cardell, Susanna, 19 ... (29)
Quiding-Järbrink, Ma ... (28)
Martner, Anna, 1979 (28)
Nilsson, Per H., 198 ... (28)
visa färre...
Lärosäte
Lunds universitet (2177)
Göteborgs universitet (1279)
Uppsala universitet (1146)
Karolinska Institutet (1037)
Umeå universitet (473)
Linköpings universitet (333)
visa fler...
Örebro universitet (245)
Stockholms universitet (182)
Linnéuniversitetet (147)
Sveriges Lantbruksuniversitet (138)
Kungliga Tekniska Högskolan (115)
Chalmers tekniska högskola (110)
Högskolan i Halmstad (80)
Högskolan i Skövde (25)
Högskolan Kristianstad (14)
Jönköping University (14)
Malmö universitet (14)
Mittuniversitetet (7)
RISE (7)
Gymnastik- och idrottshögskolan (5)
Högskolan Väst (4)
Luleå tekniska universitet (3)
Karlstads universitet (3)
Blekinge Tekniska Högskola (3)
Mälardalens universitet (2)
Södertörns högskola (2)
Högskolan i Borås (1)
Högskolan Dalarna (1)
Sophiahemmet Högskola (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (5376)
Svenska (40)
Tyska (2)
Spanska (2)
Ryska (1)
Kinesiska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5421)
Naturvetenskap (477)
Teknik (52)
Lantbruksvetenskap (48)
Samhällsvetenskap (22)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy