SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(TEKNIK OCH TEKNOLOGIER Maskinteknik Energiteknik) "

Sökning: AMNE:(TEKNIK OCH TEKNOLOGIER Maskinteknik Energiteknik)

  • Resultat 1-10 av 12164
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Okda, Sherif, et al. (författare)
  • Testing of the Aerodynamic Characteristics of an Inflatable Airfoil Section
  • 2020
  • Ingår i: Journal of Aerospace Engineering. - 1943-5525 .- 0893-1321. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflatable structures are characterized by being light and easy to manufacture and deploy. Hence, they find many applications in aerospace and aeronautical engineering. In this paper, an inflatable segment with a The National Advisory Committee for Aeronautics (NACA) 0021 airfoil cross-section is designed, fabricated, and tested. The geometrical accuracy of the manufactured inflatable segment is measured using laser scanning. Measurements show that the average normalized error of the chord length and thickness are 2.97% and 0.554%, respectively. The aerodynamic behavior of the inflatable segment is then tested in a wind tunnel at different wind speeds and angles of attack. Lift forces are measured using a six-component balance, while the drag forces are calculated from the wake measurements. The lift and drag coefficients of the inflatable section are compared to those of a standard NACA 0021 airfoil. Finally, flow visualization is examined at different angles of attack using two methods: smoke and tufts. Both methods show that flow separation starts at 15° and full stall occurs at 25°. Results indicate that inflatables can find more applications in the design and construction of aerodynamic structures, such as wings.
  •  
3.
  • Binder, Christian, 1988-, et al. (författare)
  • Phosphor Thermometry for In-Cylinder Surface Temperature Measurements in Diesel Engines
  • 2019
  • Ingår i: Measurement science and technology. - 0957-0233 .- 1361-6501.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Surface temperature measurements in technically relevant applications can be very  hallenging and yet of great importance. Phosphor thermometry is a temperature measurement technique that has previously been employed in technically relevant applications to obtain surface temperature. The technique is based on temperature-dependent changes in a phosphor’s luminescence. To improve the accuracy and precision of temperature measurements with this technique, the present study considers, by way of example, the impact of conditions inside the cylinder of a diesel engine on decay time based phosphor thermometry. After an initial, general assessment of the effect of prevailing measurement conditions, this research investigates errors caused by soot luminosity, extinction, signal trapping and changes of phosphors’ luminescence properties due to exposure to the harsh environment. Furthermore, preferable properties of phosphors which are suitable for in-cylinder temperature measurements are discussed. 16 phosphors are evaluated, including four which – to the authors’ knowledge –have previously not been used in thermometry. Results indicate that errors due to photocathode bleaching, extinction, signal trapping and changes of luminescence properties may cause an erroneous temperature evaluation with temperature errors in the order of serval tens of Kelvin.
  •  
4.
  • Wadekar, Sandip, 1989 (författare)
  • Large-Eddy Simulation of Gasoline Fuel Spray Injection at Ultra-High Injection Pressures
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gasoline direct injection is a state-of-the-art technique that reduces hydrocarbon and particulate emissions. However, further improvement is needed to meet current as well as future emission regulations. A prominent solution is to increase the fuel injection pressure which allows faster fuel droplet atomization, quick evaporation and improves fuel-air mixture formation under realistic engine conditions. In this work, the gasoline fuel injection process at ultra-high injection pressures ranging from 200 to 1500 bar was analyzed using numerical models. In particular, the Large-Eddy Simulation (LES) method, with the standard Smagorinsky turbulence model, was utilized using the Eulerian formulation  for the continuous phase. The discrete droplet phase was treated using a Lagrangian formulation together with spray sub-models. In the first part of study, spray was injected into an initially quiescent constant volume chamber using two different nozzle hole shape geometries: divergent and convergent. The numerical results were calibrated by reproducing experimentally observed liquid penetration length and efforts were made to understand the influence of ultra-high injection pressures on spray development. The calibrated models were then used to investigate the impact of ultra-high injection pressures on mean droplet sizes, droplet size distribution, spray-induced large-scale eddies and entrainment rate. The results showed that, at ultra-high injection pressures, the mean droplet sizes were significantly reduced and the droplets achieving very high  velocities. Integral length scales of spray-induced turbulence and air entrainment rate were better for the divergent-shaped injector, and considerably larger at higher injection pressures compared to lower ones. In the second part of the study, four consecutive full-cycle cold flow LES simulations were carried out to generate realistic turbulence inside the engine cylinder. The first three cycles were ignored, with the fourth cycle being used to model the injection of the fuel using the divergent-shaped injector only (which was found to be better in the previous part of this study) at different injection pressures. In addition to the continuous gas phase (Eulerian) and the dispersed liquid (Lagrangian), the liquid film feature (Finite-Area) was used to model the impingement of fuel spray on the engine walls and subsequent liquid film formation. The simulation results were used to evaluate spray-induced turbulence, fuel-air mixing efficiency and the amount of liquid mass deposited on the walls. The limitation of the high-pressure injection technique with respect to liquid film formation was optimized using a start of injection (SOI) sweep. Overall results showed that the mixing efficiency increased at high injection pressure and that SOI should occur between early injection and late injection to optimize the amount of mass being deposited on the engine walls.
  •  
5.
  • Lejon, Marcus, 1986, et al. (författare)
  • Multidisciplinary Design of a Three Stage High Speed Booster
  • 2017
  • Ingår i: ASME Turbo Expo 2017: Turbine Technical Conference and Exposition. - : ASME Press. ; 2B-2017
  • Konferensbidrag (refereegranskat)abstract
    • The paper describes a multidisciplinary conceptual design of an axial compressor, targeting a three stage, high speed, high efficiency booster with a design pressure ratio of 2.8. The paper is outlined in a step wise manner starting from basic aircraft and engine thrust requirements, establishing the definition of the high speed booster interface points and its location in the engine. Thereafter, the aerodynamic 1D/2D design is carried out using the commercial throughflow tool SC90C. A number of design aspects are described, and the steps necessary to arrive at the final design are outlined. The SC90C based design is then carried over to a CFD based conceptual design tool AxCent, in which a first profiling is carried out based on a multiple circular arc blade definition. The design obtained at this point is referred to as the VINK compressor. The first stage of the compressor is then optimized using an in-house optimization tool, where the objective functions are evaluated from detailed CFD calculations. The design is improved in terms of efficiency and in terms of meeting the design criteria put on the stage in the earlier design phases. Finally, some aeromechanical design aspects of the first stage are considered. The geometry and inlet boundary conditions of the compressor are shared with the turbomachinery community on a public server. This is intended to be used as a test case for further optimization and analysis.
  •  
6.
  •  
7.
  • Etikyala, Sreelekha, 1991 (författare)
  • Particulate Formation in GDI Engines
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The need to comply with stringent emission regulations while improving fuel economy and reducing criteria pollutant emissions from transportation presents a major challenge in the design of gasoline Direct Injection (DI) engines because of the adverse effects of ultrafine Particulate Number (PN) emissions on human health and other environmental concerns. With upcoming advances in vehicle electrification, it may be the case that electric vehicles completely replace all current vehicles powered by internal combustion engines ensuring zero emissions. In the meantime, Gasoline Direct Injection (GDI) engines have become the primary mode of transportation using gasoline as they offer better fuel economy while also providing low CO2 emissions. However, GDI engines tend to produce relatively high PN emissions when compared to conventional Port Fuel Injection (PFI) engines, largely because of challenges associated with in-cylinder liquid fuel injection. Cold-starts, transients, and high load operation generate a disproportionate share of PN emissions from GDI engines over a certification cycle. The mechanisms of PN formation during these stages must therefore be understood to identify solutions that reduce overall PN emissions in order to comply with increasingly strict emissions standards. This work presents experimental studies on particulate emissions from a naturally aspirated single cylinder metal gasoline engine run in a homogeneous configuration. The engine was adapted to enable operation in both DI and PFI modes. In PFI mode, injection was performed through a custom inlet manifold about 50 cm from the cylinder head to maximize the homogeneity of the fuel-air mixture. The metal head was eventually modified by incorporating an endoscope that made it possible to visualize the combustion process inside the cylinder. The experimental campaigns were structured to systematically isolate and clarify PN formation mechanisms. Tests were initially performed in steady state mode to obtain preliminary insights and to screen operating conditions before conducting transient tests. Particulate emissions were measured and correlated with the images obtained through endoscope visualization where possible. Key objectives of these studies were to find ways of reducing PN formation by increasing combustion stability. It was found that by avoiding conditions that cause wall wetting with liquid fuel, PN emissions can be substantially reduced during both steady state operation and transients. Warming the coolant and injecting fuel at later timings reduced PN emissions during warmup and cold transient conditions. Additionally, experiments using fuel blends with different oxygenate contents showed that the chemical composition of the fuel strongly influences particulate formation under steady state and transient conditions, and that this effect is load-dependent. Overall, the results obtained in this work indicate that wall wetting is the dominant cause of particulate formation inside the cylinder and that fuel-wall interactions involving the piston, cylinder walls, and valves during fuel injection account for a significant proportion of PN emissions in the engine raw exhaust.
  •  
8.
  • Li, Xiaojian, 1991, et al. (författare)
  • Installation effects on engine design
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing the engine bypass ratio is one way to improve propulsive efficiency. However, an increase in the bypass ratio (BPR) has usually been associated with an increase in the fan diameter. Consequently, there can be a notable increase in the impact of the engine installation on the overall aircraft performance. In order to achieve a better balance between those factors, it requires novel nacelle and engine design concepts. This report mainly reviews installation effects on engine design. Firstly, the installation effects assessment methods are introduced. Then, the installation effects on engine cycle design, intake design and exhaust design are sequentially reviewed.
  •  
9.
  • Tillig, Fabian, 1984, et al. (författare)
  • Design, operation and analysis of wind-assisted cargo ships
  • 2020
  • Ingår i: Ocean Engineering. - : Elsevier BV. - 0029-8018. ; 211:1, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents a novel approach to analytically capture aero- and hydrodynamic interaction effects on wind-assisted ships. Low aspect ratio wing theory is applied and modified to be used for the prediction of lift and drag forces of hulls sailing at drift angles. Aerodynamic interaction effects are captured by analytically solving the Navier-Stokes equation for incompressible, potential flow. The developed methods are implemented to a 4 degrees-of-freedom performance prediction model called “ShipCLEAN”, including a newly developed method for rpm control of Flettner rotors on a ship to maximize fuel savings. The accuracy of the model is proven by model- and full-scale verification. To present the variability of the model, two case study ships, a tanker and a RoRo, are equipped with a total of 11 different arrangements of Flettner rotors. The fuel savings and payback times are assessed using realistic weather from ships traveling on a Pacific Ocean route (tanker) and Baltic Sea route (RoRo). The results verify the importance of using a 4 degrees-of-freedom ship performance model, aero- and hydrodynamic interaction and the importance of controlling the rpm of each rotor individually. Fuel savings of 30% are achieved for the tanker, and 14% are achieved for the RoRo.
  •  
10.
  • Kyprianidis, Konstantinos, 1984, et al. (författare)
  • Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
  • 2014
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 136:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, along with the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. The thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio of 1.18 at hot-day top of climb conditions. At ISA midcruise conditions a specific thrust of 86 m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 56%, and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000 lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines. The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions, primarily because this design variable affects core efficiency at midcruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. The analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor do they account for losses in the bypass duct and jet pipe, while a relatively detailed engine performance model, such as the one utilized in this study, does. Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberized-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilized to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12164
Typ av publikation
tidskriftsartikel (6245)
konferensbidrag (3611)
doktorsavhandling (546)
rapport (543)
licentiatavhandling (364)
bokkapitel (311)
visa fler...
forskningsöversikt (216)
annan publikation (174)
bok (53)
patent (42)
proceedings (redaktörskap) (33)
samlingsverk (redaktörskap) (22)
recension (4)
konstnärligt arbete (3)
visa färre...
Typ av innehåll
refereegranskat (9537)
övrigt vetenskapligt/konstnärligt (2473)
populärvet., debatt m.m. (154)
Författare/redaktör
Sundén, Bengt (840)
Leckner, Bo G, 1936 (263)
Ji, Xiaoyan (241)
Johnsson, Filip, 196 ... (214)
Yan, Jinyue, 1959- (196)
Yan, Jinyue (182)
visa fler...
Fransson, Torsten (181)
Li, Hailong, 1976- (176)
Öhman, Marcus (168)
Lyngfelt, Anders, 19 ... (164)
Yuan, Jinliang (145)
Bollen, Math (139)
Lu, Xiaohua (132)
Mattisson, Tobias, 1 ... (129)
Xie, Gongnan (127)
Palm, Björn (119)
Thunman, Henrik, 197 ... (115)
Laumert, Björn (107)
Kyprianidis, Konstan ... (106)
Zhu, Bin (104)
Bai, Xue-Song (103)
Andersson, Martin (101)
Umeki, Kentaro (100)
Harvey, Simon, 1965 (99)
Normann, Fredrik, 19 ... (99)
Ma, Weimin (99)
Kudinov, Pavel (99)
Wu, Zan (98)
Andersson, Klas, 197 ... (98)
Åmand, Lars-Erik, 19 ... (97)
Boström, Dan (95)
Tunestål, Per (93)
Pallarès, David, 197 ... (90)
Anglart, Henryk (86)
Dahl, Jan (84)
Aldén, Marcus (81)
Yang, Weihong (81)
Lundgren, Joakim (81)
Wang, Lei (78)
Gebart, Rikard (77)
Skoglund, Nils (76)
Li, Zhongshan (76)
Rydén, Magnus, 1975 (75)
Tunér, Martin (73)
Bechta, Sevostian (73)
Grip, Carl-Erik (73)
Boman, Christoffer (70)
Berntsson, Thore, 19 ... (68)
Johansson, Bengt (68)
Bales, Chris (68)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (3374)
Chalmers tekniska högskola (2992)
Lunds universitet (2086)
Luleå tekniska universitet (1631)
Mälardalens universitet (1074)
RISE (444)
visa fler...
Uppsala universitet (423)
Högskolan Dalarna (399)
Umeå universitet (321)
Högskolan i Gävle (269)
Linköpings universitet (199)
Högskolan i Halmstad (177)
Karlstads universitet (118)
Linnéuniversitetet (109)
Sveriges Lantbruksuniversitet (78)
Stockholms universitet (71)
Göteborgs universitet (69)
Högskolan i Borås (61)
Jönköping University (35)
IVL Svenska Miljöinstitutet (30)
Mittuniversitetet (28)
Högskolan Väst (21)
Malmö universitet (17)
Örebro universitet (14)
VTI - Statens väg- och transportforskningsinstitut (12)
Högskolan i Skövde (11)
Blekinge Tekniska Högskola (11)
Karolinska Institutet (6)
Högskolan Kristianstad (3)
Naturvårdsverket (1)
visa färre...
Språk
Engelska (11688)
Svenska (412)
Kinesiska (18)
Ryska (12)
Persiska (11)
Franska (5)
visa fler...
Tyska (4)
Spanska (4)
Norska (2)
Portugisiska (2)
Japanska (2)
Italienska (1)
Odefinierat språk (1)
Finska (1)
Polska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Teknik (12164)
Naturvetenskap (1049)
Samhällsvetenskap (183)
Lantbruksvetenskap (67)
Medicin och hälsovetenskap (22)
Humaniora (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy