SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0003 0007 OR L773:1520 0477 "

Sökning: L773:0003 0007 OR L773:1520 0477

  • Resultat 1-25 av 86
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cooper, Steven J., et al. (författare)
  • Exploring Snowfall Variability through the High-Latitude Measurement of Snowfall (HiLaMS) Field Campaign
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 103:8, s. E1762-E1780
  • Tidskriftsartikel (refereegranskat)abstract
    • The High-Latitude Measurement of Snowfall (HiLaMS) campaign explored variability in snowfall properties and processes at meteorologically distinct field sites located in Haukeliseter, Norway, and Kiruna, Sweden, during the winters of 2016/17 and 2017/18, respectively. Campaign activities were founded upon the sensitivities of a low-cost, core instrumentation suite consisting of Micro Rain Radar, Precipitation Imaging Package, and Multi-Angle Snow Camera. These instruments are highly portable to remote field sites and, considered together, provide a unique and complementary set of snowfall observations including snowflake habit, particle size distributions, fall speeds, surface snowfall accumulations, and vertical profiles of radar moments and snow water content. These snow-specific parameters, used in combination with existing observations from the field sites such as snow gauge accumulations and ambient weather conditions, allow for advanced studies of snowfall processes. HiLaMS observations were used to 1) successfully develop a combined radar and in situ microphysical property retrieval scheme to estimate both surface snowfall accumulation and the vertical profile of snow water content, 2) identify the predominant snowfall regimes at Haukeliseter and Kiruna and characterize associated macrophysical and microphysical properties, snowfall production, and meteorological conditions, and 3) identify biases in the HARMONIE-AROME numerical weather prediction model for forecasts of snowfall accumulations and vertical profiles of snow water content for the distinct snowfall regimes observed at the mountainous Haukeliseter site. HiLaMS activities and results suggest value in the deployment of this enhanced snow observing instrumentation suite to new and diverse high-latitude locations that may be underrepresented in climate and weather process studies.
  •  
2.
  • Aaron-Morrison, Arlene P., et al. (författare)
  • State of the climate in 2014
  • 2015
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 96
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the dozens of essential climate variables monitored each year in this report continued to follow their long-term trends in 2014, with several setting new records. Carbon dioxide, methane, and nitrous oxide-the major greenhouse gases released into Earth's atmosphere-once again all reached record high average atmospheric concentrations for the year. Carbon dioxide increased by 1.9 ppm to reach a globally averaged value of 397.2 ppm for 2014. Altogether, 5 major and 15 minor greenhouse gases contributed 2.94 W m-2 of direct radiative forcing, which is 36% greater than their contributions just a quarter century ago. Accompanying the record-high greenhouse gas concentrations was nominally the highest annual global surface temperature in at least 135 years of modern record keeping, according to four independent observational analyses. The warmth was distributed widely around the globe's land areas, Europe observed its warmest year on record by a large margin, with close to two dozen countries breaking their previous national temperature records; many countries in Asia had annual temperatures among their 10 warmest on record; Africa reported above-average temperatures across most of the continent throughout 2014; Australia saw its third warmest year on record, following record heat there in 2013; Mexico had its warmest year on record; and Argentina and Uruguay each had their second warmest year on record. Eastern North America was the only major region to observe a below-average annual temperature. But it was the oceans that drove the record global surface temperature in 2014. Although 2014 was largely ENSO-neutral, the globally averaged sea surface temperature (SST) was the highest on record. The warmth was particularly notable in the North Pacific Ocean where SST anomalies signaled a transition from a negative to positive phase of the Pacific decadal oscillation. In the winter of 2013/14, unusually warm water in the northeast Pacific was associated with elevated ocean heat content anomalies and elevated sea level in the region. Globally, upper ocean heat content was record high for the year, reflecting the continued increase of thermal energy in the oceans, which absorb over 90% of Earth's excess heat from greenhouse gas forcing. Owing to both ocean warming and land ice melt contributions, global mean sea level in 2014 was also record high and 67 mm greater than the 1993 annual mean, when satellite altimetry measurements began. Sea surface salinity trends over the past decade indicate that salty regions grew saltier while fresh regions became fresher, suggestive of an increased hydrological cycle over the ocean expected with global warming. As in previous years, these patterns are reflected in 2014 subsurface salinity anomalies as well. With a now decade-long trans-basin instrument array along 26°N, the Atlantic meridional overturning circulation shows a decrease in transport of-4.2 ± 2.5 Sv decade-1. Precipitation was quite variable across the globe. On balance, precipitation over the world's oceans was above average, while below average across land surfaces. Drought continued in southeastern Brazil and the western United States. Heavy rain during April-June led to devastating floods in Canada's Eastern Prairies. Above-normal summer monsoon rainfall was observed over the southern coast of West Africa, while drier conditions prevailed over the eastern Sahel. Generally, summer monsoon rainfall over eastern Africa was above normal, except in parts of western South Sudan and Ethiopia. The south Asian summer monsoon in India was below normal, with June record dry. Across the major tropical cyclone basins, 91 named storms were observed during 2014, above the 1981-2010 global average of 82. The Eastern/Central Pacific and South Indian Ocean basins experienced significantly above-normal activity in 2014; all other basins were either at or below normal. The 22 named storms in the Eastern/Central Pacific was the basin's most since 1992. Similar to 2013, the North Atlantic season was quieter than most years of the last two decades with respect to the number of storms, despite the absence of El Niño conditions during both years. In higher latitudes and at higher elevations, increased warming continued to be visible in the decline of glacier mass balance, increasing permafrost temperatures, and a deeper thawing layer in seasonally frozen soil. In the Arctic, the 2014 temperature over land areas was the fourth highest in the 115-year period of record and snow melt occurred 20-30 days earlier than the 1998-2010 average. The Greenland Ice Sheet experienced extensive melting in summer 2014. The extent of melting was above the 1981-2010 average for 90% of the melt season, contributing to the second lowest average summer albedo over Greenland since observations began in 2000 and a record-low albedo across the ice sheet for August. On the North Slope of Alaska, new record high temperatures at 20-m depth were measured at four of five permafrost observatories. In September, Arctic minimum sea ice extent was the sixth lowest since satellite records began in 1979. The eight lowest sea ice extents during this period have occurred in the last eight years. Conversely, in the Antarctic, sea ice extent countered its declining trend and set several new records in 2014, including record high monthly mean sea ice extent each month from April to November. On 20 September, a record large daily Antarctic sea ice extent of 20.14 × 106 km2 occurred. The 2014 Antarctic stratospheric ozone hole was 20.9 million km2 when averaged from 7 September to 13 October, the sixth smallest on record and continuing a decrease, albeit statistically insignificant, in area since 1998.
  •  
3.
  • Abrahamsen, E. Povl, et al. (författare)
  • ANTARCTICA AND THE SOUTHERN OCEAN
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Achberger, Christine, 1968, et al. (författare)
  • The Nordic and Baltic Countries
  • 2012
  • Ingår i: Bulletin of The American Meteorological Society -. - 0003-0007 .- 1520-0477. ; 93:7
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Ades, M., et al. (författare)
  • Global Climate : in State of the climate in 2019
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Ades, M., et al. (författare)
  • GLOBAL CLIMATE
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Ades, M., et al. (författare)
  • State of the Climate in 2018
  • 2019
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 100:9, s. Si-S306
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
9.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
10.
  • Bianchi, F., et al. (författare)
  • The SALTENA Experiment : Comprehensive Observations of Aerosol Sources, Formation, and Processes in the South American Andes
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:2, s. E212-E229
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an introduction to the Southern Hemisphere High Altitude Experiment on Particle Nucleation and Growth (SALTENA). This field campaign took place between December 2017 and June 2018 (wet to dry season) at Chacaltaya (CHC), a GAW (Global Atmosphere Watch) station located at 5,240 m MSL in the Bolivian Andes. Concurrent measurements were conducted at two additional sites in El Alto (4,000 m MSL) and La Paz (3,600 m MSL). The overall goal of the campaign was to identify the sources, understand the formation mechanisms and transport, and characterize the properties of aerosol at these stations. State-of-the-art instruments were brought to the station complementing the ongoing permanent GAW measurements, to allow a comprehensive description of the chemical species of anthropogenic and biogenic origin impacting the station and contributing to new particle formation. In this overview we first provide an assessment of the complex meteorology, airmass origin, and boundary layer-free troposphere interactions during the campaign using a 6-month high-resolution Weather Research and Forecasting (WRF) simulation coupled with Flexible Particle dispersion model (FLEXPART). We then show some of the research highlights from the campaign, including (i) chemical transformation processes of anthropogenic pollution while the air masses are transported to the CHC station from the metropolitan area of La Paz-El Alto, (ii) volcanic emissions as an important source of atmospheric sulfur compounds in the region, (iii) the characterization of the compounds involved in new particle formation, and (iv) the identification of long-range-transported compounds from the Pacific or the Amazon basin. We conclude the article with a presentation of future research foci. The SALTENA dataset highlights the importance of comprehensive observations in strategic high-altitude locations, especially the undersampled Southern Hemisphere.
  •  
11.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
12.
  •  
13.
  • Brönnimann, Stefan, et al. (författare)
  • Unlocking Pre-1850 Instrumental Meteorological Records : A Global Inventory
  • 2019
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 100:12, s. ES389-ES413
  • Tidskriftsartikel (refereegranskat)abstract
    • Instrumental meteorological measurements from periods prior to the start of national weather services are designated early instrumental data. They have played an important role in climate research as they allow daily to decadal variability and changes of temperature, pressure, and precipitation, including extremes, to be addressed. Early instrumental data can also help place twenty-first century climatic changes into a historical context such as defining preindustrial climate and its variability. Until recently, the focus was on long, high-quality series, while the large number of shorter series (which together also cover long periods) received little to no attention. The shift in climate and climate impact research from mean climate characteristics toward weather variability and extremes, as well as the success of historical reanalyses that make use of short series, generates a need for locating and exploring further early instrumental measurements. However, information on early instrumental series has never been electronically compiled on a global scale. Here we attempt a worldwide compilation of metadata on early instrumental meteorological records prior to 1850 (1890 for Africa and the Arctic). Our global inventory comprises information on several thousand records, about half of which have not yet been digitized (not even as monthly means), and only approximately 20% of which have made it to global repositories. The inventory will help to prioritize data rescue efforts and can be used to analyze the potential feasibility of historical weather data products. The inventory will be maintained as a living document and is a first, critical, step toward the systematic rescue and reevaluation of these highly valuable early records. Additions to the inventory are welcome.
  •  
14.
  • Carmichael, Gregory R., et al. (författare)
  • Global Atmospheric Composition Observations : The Heart of Vital Climate and Environmental Action
  • 2023
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 104:3, s. E666-E672
  • Tidskriftsartikel (refereegranskat)abstract
    • Further long-term investments in high-quality, research-driven, fit-for-purpose observations of atmospheric composition are needed globally to meet urgent societal needs related to weather, climate, air quality, and other environmental issues. Challenges include maintaining current observing systems in the face of eroding budgets for long-term monitoring and filling the geographical gaps for key constituents needed for sound services and policies. The observing systems can be bolstered through science-for-services applications, by embracing interoperable observation systems and standardized metadata, and ensuring that the data are findable, accessible, interoperable, and reusable. There is an urgent need to move from opportunities-driven one-component observations to more systematic, planned multifunctional infrastructure, where the observational data flow is coupled with Earth system models to serve both operational and research purposes. This approach fosters a community where user experience feeds back into the research components and where mature research results are translated into operational applications. This will lead to faster exploration and exploitation of atmospheric composition information and more impactful applications for science and society. We discuss here the urgent need to (i) achieve global coverage, (ii) harmonize infrastructure operations, (iii) establish focused policies, and (iv) strengthen coordination of atmospheric composition infrastructure.  
  •  
15.
  •  
16.
  • Chen, Xuelong, et al. (författare)
  • Investigation of Precipitation Process in the Water Vapor Channel of the Yarlung Zsangbo Grand Canyon
  • 2024
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 105:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yarlung Zsangbo Grand Canyon (YGC) is an important pathway for water vapor transport from southern Asia to the Tibetan Plateau (TP). This area exhibits one of the highest frequencies of convective activity in China, and precipitation often induces natural disasters in local communities, which can dramatically affect their livelihoods. In addition, the produced precipitation gives rise to vast glaciers and large rivers around the YGC. In 2018, the Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team to conduct an "investigation of the precipitation process in the water vapor channel of the Yarlung Zsangbo Grand Canyon" (INVC) in the southeastern TP. This team subsequently established a comprehensive observation system of land-air interaction, water vapor, clouds, and rainfall activity in the YGC. This paper introduces the developed observation system and summarizes the preliminary results obtained during the first two years of the project. Using this INVC observation network, herein, we focus on the development of rainfall events on the southeastern TP. This project also helps to monitor geohazards in the key area of the Sichuan-Tibet railway, which traverses the northern YGC. The observation datasets will benefit future research on mountain meteorology.
  •  
17.
  • Devasthale, Abhay, et al. (författare)
  • A DECADE OF SPACEBORNE OBSERVATIONS OF THE ARCTIC ATMOSPHERE : Novel Insights from NASA's AIRS Instrument
  • 2016
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 97:11, s. 2163-2176
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic sea ice is declining rapidly and its annual ice extent minima reached record lows twice during the last decade. Large environmental and socioeconomic implications related to sea ice reduction in a warming world necessitate realistic simulations of the Arctic climate system, not least to formulate relevant environmental policies on an international scale. However, despite considerable progress in the last few decades, future climate projections from numerical models still exhibit the largest uncertainties over the polar regions. The lack of sufficient observations of essential climate variables is partly to blame for the poor representation of key atmospheric processes, and their coupling to the surface, in climate models. Observations from the hyper spectral Atmospheric Infrared Sounder (AIRS) instrument on board National Aeronautics and Space Administration (NASA)'s Aqua satellite are contributing toward improved understanding of the vertical structure of the atmosphere over the poles since 2002, including the lower troposphere. This part of the atmosphere is especially important in the Arctic, as it directly impacts sea ice and its short-term variability. Although in situ measurements provide invaluable ground truth, they are spatially and temporally inhomogeneous and sporadic over the Arctic. A growing number of studies are exploiting AIRS data to investigate the thermodynamic structure of the Arctic atmosphere, with applications ranging from understanding processes to deriving climatologies; all of which are also useful to test and improve parameterizations in climate models. As the AIRS data record now extends more than a decade, a select few of many such noteworthy applications of AIRS data over this challenging and rapidly changing landscape are highlighted here.
  •  
18.
  •  
19.
  • Dunn, R. J. H., et al. (författare)
  • GLOBAL CLIMATE : State of the Climate in 2020
  • 2021
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 102:8
  • Tidskriftsartikel (refereegranskat)
  •  
20.
  • Essery, Richard, et al. (författare)
  • An Evaluation of Forest Snow Process Simulations
  • 2009
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 90:8, s. 1120-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Northern Hemisphere has large areas that are forested and seasonally snow covered. Compared with open areas, forest canopies strongly influence interactions between the atmosphere and snow on the ground by sheltering the snow from wind and solar radiation and by intercepting falling snow; these influences have important consequences for the meteorology, hydrology, and ecology of forests. Many of the land surface models used in meteorological and hydrological forecasting now include representations of canopy snow processes, but these have not been widely tested in comparison with observations. Phase 2 of the Snow Model Intercomparison Project (SnowMIP2) was therefore designed as an intercomparison of surface mass and energy balance simulations for snow in forested areas. Model forcing and calibration data for sites with paired forested and open plots were supplied to modeling groups. Participants in 11 countries contributed output from 33 models, and the results are published here for sites in Canada, the United States, and Switzerland. On average, the models perform fairly well in simulating snow accumulation and ablation, although there is a wide intermodal spread and a tendency to underestimate differences in snow mass between open and forested areas. Most models capture the large differences in surface albedos and temperatures between forest canopies and open snow well. There is, however, a strong tendency for models to underestimate soil temperature under snow, particularly for forest sites, and this would have large consequences for simulations of runoff and biological processes in the soil.
  •  
21.
  • Geerts, Bart, et al. (författare)
  • The COMBLE Campaign : A Study of Marine Boundary Layer Clouds in Arctic Cold-Air Outbreaks
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:5, s. E1371-E1389
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.  
  •  
22.
  • Gultepe, Ismail, et al. (författare)
  • Ice fog in arctic during fram-ice fog project aviation and nowcasting applications
  • 2014
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 95:2, s. 211-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased understanding of ice fog microphysics can improve frost and ice fog prediction using forecast models and remote-sensing retrievals, thereby reducing potential hazards to aviation
  •  
23.
  • Holtslag, A. A. M., et al. (författare)
  • STABLE ATMOSPHERIC BOUNDARY LAYERS AND DIURNAL CYCLES : Challenges for Weather and Climate Models
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:11, s. 1691-1706
  • Tidskriftsartikel (refereegranskat)abstract
    • The representation of the atmospheric boundary layer is an important part of weather and climate models and impacts many applications such as air quality and wind energy. Over the years, the performance in modeling 2-m temperature and 10-m wind speed has improved but errors are still significant. This is in particular the case under clear skies and low wind speed conditions at night as well as during winter in stably stratified conditions over land and ice. In this paper, the authors review these issues and provide an overview of the current understanding and model performance. Results from weather forecast and climate models are used to illustrate the state of the art as well as findings and recommendations from three intercomparison studies held within the Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS). Within GABLS, the focus has been on the examination of the representation of the stable boundary layer and the diurnal cycle over land in clear-sky conditions. For this purpose, single-column versions of weather and climate models have been compared with observations, research models, and large-eddy simulations. The intercomparison cases are based on observations taken in the Arctic, Kansas, and Cabauw in the Netherlands. From these studies, we find that even for the noncloudy boundary layer important parameterization challenges remain.
  •  
24.
  • Jung, Thomas, et al. (författare)
  • ADVANCING POLAR PREDICTION CAPABILITIES ON DAILY TO SEASONAL TIME SCALES
  • 2016
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 97:9, s. 1631-
  • Tidskriftsartikel (refereegranskat)abstract
    • The polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with fewer in situ observations, and with numerous local physical processes that are less well represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere-sea ice-ocean models, even for short-term prediction; and insight into polar-lower latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting communites will work together with stakeholders in a period of intensive observing: modeling, prediction, verification, user engagement, and educational activities.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 86
Typ av publikation
tidskriftsartikel (84)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (80)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Allan, Rob (8)
Benedetti, Angela (8)
Long, Craig S. (8)
Becker, Andreas (7)
Christiansen, Hanne ... (7)
Christy, John R. (7)
visa fler...
Dorigo, Wouter A. (7)
Azorin-Molina, César (6)
Barreira, Sandra (6)
Berry, David I. (6)
Box, J. E. (6)
Chung, E. S. (6)
Coldewey-Egbers, Mel ... (6)
Colwell, Steve (6)
Cooper, Owen R. (6)
Davis, Sean M. (6)
De Jeu, Richard A.M. (6)
Donat, Markus G. (6)
Reid, Phillip (6)
Arndt, Derek S. (5)
Berrisford, Paul (5)
Bissolli, Peter (5)
Bosilovich, Michael ... (5)
Boucher, Olivier (5)
Bromwich, David H. (5)
Brown, R. (5)
Cappelen, J. (5)
Chambers, Don P. (5)
Clem, Kyle R. (5)
De Eyto, Elvira (5)
De Laat, Jos (5)
Degasperi, Curtis L. (5)
Degenstein, Doug (5)
Derksen, C. (5)
Di Girolamo, Larry (5)
Dlugokencky, Ed J. (5)
Dokulil, Martin T. (5)
Dolman, A. Johannes (5)
Drozdov, D. S. (5)
Dunn, Robert J.H. (5)
Phillips, C. (5)
Fogt, Ryan L. (5)
Johnson, Bryan (5)
Keller, Linda M. (5)
Lazzara, Matthew A. (5)
Massom, Robert A. (5)
Nash, Eric R. (5)
Newman, Paul A. (5)
Santee, Michelle L. (5)
Scambos, Ted A. (5)
visa färre...
Lärosäte
Göteborgs universitet (29)
Stockholms universitet (27)
Uppsala universitet (14)
Lunds universitet (11)
Kungliga Tekniska Högskolan (3)
Luleå tekniska universitet (3)
visa fler...
Chalmers tekniska högskola (3)
Umeå universitet (1)
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (86)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (78)
Medicin och hälsovetenskap (2)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy