SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0094 2405 OR L773:2473 4209 "

Sökning: L773:0094 2405 OR L773:2473 4209

  • Resultat 1-25 av 345
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Hallaq, Hania A., et al. (författare)
  • AAPM task group report 302 : Surface-guided radiotherapy
  • 2022
  • Ingår i: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 49:4, s. 82-112
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical use of surface imaging has increased dramatically, with demonstrated utility for initial patient positioning, real-time motion monitoring, and beam gating in a variety of anatomical sites. The Therapy Physics Subcommittee and the Imaging for Treatment Verification Working Group of the American Association of Physicists in Medicine commissioned Task Group 302 to review the current clinical uses of surface imaging and emerging clinical applications. The specific charge of this task group was to provide technical guidelines for clinical indications of use for general positioning, breast deep-inspiration breath hold treatment, and frameless stereotactic radiosurgery. Additionally, the task group was charged with providing commissioning and on-going quality assurance (QA) requirements for surface-guided radiation therapy (SGRT) as part of a comprehensive QA program including risk assessment. Workflow considerations for other anatomic sites and for computed tomography simulation, including motion management, are also discussed. Finally, developing clinical applications, such as stereotactic body radiotherapy (SBRT) or proton radiotherapy, are presented. The recommendations made in this report, which are summarized at the end of the report, are applicable to all video-based SGRT systems available at the time of writing.
  •  
2.
  •  
3.
  • Andersén, Christoffer, 1991-, et al. (författare)
  • Deep learning based digitisation of prostate brachytherapy needles in ultrasound images
  • 2020
  • Ingår i: Medical physics. - : Wiley-Blackwell Publishing Inc.. - 2473-4209 .- 0094-2405. ; 47:12, s. 6414-6420
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To develop, and evaluate the performance of, a deep learning based 3D convolutional neural network (CNN) artificial intelligence (AI) algorithm aimed at finding needles in ultrasound images used in prostate brachytherapy.METHODS: Transrectal ultrasound (TRUS) image volumes from 1102 treatments were used to create a clinical ground truth (CGT) including 24422 individual needles that had been manually digitised by medical physicists during brachytherapy procedures. A 3D CNN U-net with 128x128x128 TRUS image volumes as input was trained using 17215 needle examples. Predictions of voxels constituting a needle were combined to yield a 3D linear function describing the localisation of each needle in a TRUS volume. Manual and AI digitisations were compared in terms of the root-mean-square distance (RMSD) along each needle, expressed as median and interquartile range (IQR). The method was evaluated on a dataset including 7207 needle examples. A subgroup of the evaluation data set (n=188) was created, where the needles were digitised once more by a medical physicist (G1) trained in brachytherapy. The digitisation procedure was timed.RESULTS: The RMSD between the AI and CGT was 0.55 (IQR: 0.35-0.86) mm. In the smaller subset, the RMSD between AI and CGT was similar (0.52 [IQR: 0.33-0.79] mm) but significantly smaller (p<0.001) than the difference of 0.75 (IQR: 0.49-1.20) mm between AI and G1. The difference between CGT and G1 was 0.80 (IQR: 0.48-1.18) mm, implying that the AI performed as well as the CGT in relation to G1. The mean time needed for human digitisation was 10 min 11 sec, while the time needed for the AI was negligible.CONCLUSIONS: A 3D CNN can be trained to identify needles in TRUS images. The performance of the network was similar to that of a medical physicist trained in brachytherapy. Incorporating a CNN for needle identification can shorten brachytherapy treatment procedures substantially.
  •  
4.
  •  
5.
  • Andersson, Jonas, 1975-, et al. (författare)
  • Estimation of patient skin dose in fluoroscopy : summary of a joint report by AAPM TG357 and EFOMP
  • 2021
  • Ingår i: Medical physics (Lancaster). - : John Wiley & Sons. - 0094-2405 .- 2473-4209. ; 48:7, s. e671-e696
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Physicians use fixed C-arm fluoroscopy equipment with many interventional radiological and cardiological procedures. The associated effective dose to a patient is generally considered low risk, as the benefit-risk ratio is almost certainly highly favorable. However, X-ray-induced skin injuries may occur due to high absorbed patient skin doses from complex fluoroscopically guided interventions (FGI). Suitable action levels for patient-specific follow-up could improve the clinical practice. There is a need for a refined metric regarding follow-up of X-ray-induced patient injuries and the knowledge gap regarding skin dose-related patient information from fluoroscopy devices must be filled. The most useful metric to indicate a risk of erythema, epilation or greater skin injury that also includes actionable information is the peak skin dose, that is, the largest dose to a region of skin.Materials and Methods: The report is based on a comprehensive review of best practices and methods to estimate peak skin dose found in the scientific literature and situates the importance of the Digital Imaging and Communication in Medicine (DICOM) standard detailing pertinent information contained in the Radiation Dose Structured Report (RDSR) and DICOM image headers for FGI devices. Furthermore, the expertise of the task group members and consultants have been used to bridge and discuss different methods and associated available DICOM information for peak skin dose estimation.Results: The report contributes an extensive summary and discussion of the current state of the art in estimating peak skin dose with FGI procedures with regard to methodology and DICOM information. Improvements in skin dose estimation efforts with more refined DICOM information are suggested and discussed.Conclusions: The endeavor of skin dose estimation is greatly aided by the continuing efforts of the scientific medical physics community, the numerous technology enhancements, the dose-controlling features provided by the FGI device manufacturers, and the emergence and greater availability of the DICOM RDSR. Refined and new dosimetry systems continue to evolve and form the infrastructure for further improvements in accuracy. Dose-related content and information systems capable of handling big data are emerging for patient dose monitoring and quality assurance tools for large-scale multihospital enterprises.
  •  
6.
  • Andersson, Karin M., 1989-, et al. (författare)
  • Evaluation of two commercial CT metal artifact reduction algorithms for use in proton radiotherapy treatment planning in the head and neck area
  • 2018
  • Ingår i: Medical physics (Lancaster). - : Wiley-Blackwell Publishing Inc.. - 0094-2405 .- 2473-4209. ; 45:10, s. 4329-4344
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To evaluate two commercial CT metal artifact reduction (MAR) algorithms for use in proton treatment planning in the head and neck (H&N) area.METHODS: An anthropomorphic head phantom with removable metallic implants (dental fillings or neck implant) was CT-scanned to evaluate the O-MAR (Philips) and the iMAR (Siemens) algorithms. Reference images were acquired without any metallic implants in place. Water equivalent thickness (WET) was calculated for different path directions and compared between image sets. Images were also evaluated for use in proton treatment planning for parotid, tonsil, tongue base, and neck node targets. The beams were arranged so as to not traverse any metal prior to the target, enabling evaluation of the impact on dose calculation accuracy from artifacts surrounding the metal volume. Plans were compared based on γ analysis (1 mm distance-to-agreement/1% difference in local dose) and dose volume histogram metrics for targets and organs at risk (OARs). Visual grading evaluation of 30 dental implant patient MAR images was performed by three radiation oncologists.RESULTS: In the dental fillings images, ΔWET along a low-density streak was reduced from -17.0 to -4.3 mm with O-MAR and from -16.1 mm to -2.3 mm with iMAR, while for other directions the deviations were increased or approximately unchanged when the MAR algorithms were used. For the neck implant images, ΔWET was generally reduced with MAR but residual deviations remained (of up to -2.3 mm with O-MAR and of up to -1.5 mm with iMAR). The γ analysis comparing proton dose distributions for uncorrected/MAR plans and corresponding reference plans showed passing rates >98% of the voxels for all phantom plans. However, substantial dose differences were seen in areas of most severe artifacts (γ passing rates of down to 89% for some cases). MAR reduced the deviations in some cases, but not for all plans. For a single patient case dosimetrically evaluated, minor dose differences were seen between the uncorrected and MAR plans (γ passing rate approximately 97%). The visual grading of patient images showed that MAR significantly improved image quality (P < 0.001).CONCLUSIONS: O-MAR and iMAR significantly improved image quality in terms of anatomical visualization for target and OAR delineation in dental implant patient images. WET calculations along several directions, all outside the metallic regions, showed that both uncorrected and MAR images contained metal artifacts which could potentially lead to unacceptable errors in proton treatment planning. ΔWET was reduced by MAR in some areas, while increased or unchanged deviations were seen for other path directions. The proton treatment plans created for the phantom images showed overall acceptable dose distributions differences when compared to the reference cases, both for the uncorrected and MAR images. However, substantial dose distribution differences in the areas of most severe artifacts were seen for some plans, which were reduced by MAR in some cases but not all. In conclusion, MAR could be beneficial to use for proton treatment planning; however, case-by-case evaluations of the metal artifact-degraded images are always recommended.
  •  
7.
  •  
8.
  • Arce, P., et al. (författare)
  • Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group
  • 2021
  • Ingår i: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 48:1, s. 19-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing. Aims: To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics. Materials and Methods: G4-Med currently includes 18 tests. They range from the benchmarking of fundamental physics quantities to the testing of Monte Carlo simulation setups typical of medical physics applications. Both electromagnetic and hadronic physics processes and models within the prebuilt Geant4 physics lists are tested. The tests included in G4-Med are executed on the CERN computing infrastructure via the use of the geant-val web application, developed at CERN for Geant4 testing. The physical observables can be compared to reference data for benchmarking and to results of previous Geant4 versions for regression testing purposes. Results: This paper describes the tests included in G4-Med and shows the results derived from the benchmarking of Geant4 10.5 against reference data. Discussion: Our results indicate that the Geant4 electromagnetic physics constructor G4EmStandardPhysics_option4 gives a good agreement with the reference data for all the tests. The QGSP_BIC_HP physics list provided an overall adequate description of the physics involved in hadron therapy, including proton and carbon ion therapy. New tests should be included in the next stage of the project to extend the benchmarking to other physical quantities and application scenarios of interest for medical physics. Conclusion: The results presented and discussed in this paper will aid users in tailoring physics lists to their particular application.
  •  
9.
  • Atefi, Seyed Reza, et al. (författare)
  • Intracranial haemorrhage alters scalp potential distributions in bioimpedance cerebral monitoring applications : preliminary results from FEM simulation on a realistic head model and human subjects
  • 2016
  • Ingår i: Medical Physics. - : American Association of Physicists in Medicine. - 2473-4209 .- 0094-2405. ; 43:2, s. 675-686
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Current diagnostic neuroimaging for detection of intracranial hemorrhage (ICH) is limited to fixed scanners requiring patient transport and extensive infrastructure support. ICH diagnosis would therefore benefit from a portable diagnostic technology, such as electrical bioimpedance (EBI). Through simulations and patient observation, the authors assessed the influence of unilateral ICH hematomas on quasisymmetric scalp potential distributions in order to establish the feasibility of EBI technology as a potential tool for early diagnosis. Methods: Finite element method (FEM) simulations and experimental leftright hemispheric scalp potential differences of healthy and damaged brains were compared with respect to the asymmetry caused by ICH lesions on quasisymmetric scalp potential distributions. In numerical simulations, this asymmetry was measured at 25 kHz and visualized on the scalp as the normalized potential difference between the healthy and ICH damaged models. Proof-of-concept simulations were extended in a pilot study of experimental scalp potential measurements recorded between 0 and 50 kHz with the authors custom-made bioimpedance spectrometer. Mean leftright scalp potential differences recorded from the frontal, central, and parietal brain regions of ten healthy control and six patients suffering from acute/subacute ICH were compared. The observed differences were measured at the 5% level of significance using the two-sample Welch ttest. Results: The 3D-anatomically accurate FEM simulations showed that the normalized scalp potential difference between the damaged and healthy brain models is zero everywhere on the head surface, except in the vicinity of the lesion, where it can vary up to 5%. The authors preliminary experimental results also confirmed that the leftright scalp potential difference in patients with ICH (e.g., 64 mV) is significantly larger than in healthy subjects (e.g., 20.8 mV; P < 0.05). Conclusions: Realistic, proof-of-concept simulations confirmed that ICH affects quasisymmetric scalp potential distributions. Pilot clinical observations with the authors custom-made bioimpedance spectrometer also showed higher leftright potential differences in the presence of ICH, similar to those of their simulations, that may help to distinguish healthy subjects from ICH patients. Although these pilot clinical observations are in agreement with the computer simulations, the small sample size of this study lacks statistical power to exclude the influence of other possible confounders such as age, ex, and electrode positioning. The agreement with previously published simulation-based and clinical results, however, suggests that EBI technology may be potentially useful for ICH detection.
  •  
10.
  • Ba, Alexandre, et al. (författare)
  • Inter-laboratory comparison of channelized hotelling observer computation
  • 2018
  • Ingår i: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 45:7, s. 3019-3030
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The task-based assessment of image quality using model observers is increasingly used for the assessment of different imaging modalities. However, the performance computation of model observers needs standardization as well as a well-established trust in its implementation methodology and uncertainty estimation. The purpose of this work was to determine the degree of equivalence of the channelized Hotelling observer performance and uncertainty estimation using an intercomparison exercise. Materials and Methods: Image samples to estimate model observer performance for detection tasks were generated from two-dimensional CT image slices of a uniform water phantom. A common set of images was sent to participating laboratories to perform and document the following tasks: (a) estimate the detectability index of a well-defined CHO and its uncertainty in three conditions involving different sized targets all at the same dose, and (b) apply this CHO to an image set where ground truth was unknown to participants (lower image dose). In addition, and on an optional basis, we asked the participating laboratories to (c) estimate the performance of real human observers from a psychophysical experiment of their choice. Each of the 13 participating laboratories was confidentially assigned a participant number and image sets could be downloaded through a secure server. Results were distributed with each participant recognizable by its number and then each laboratory was able to modify their results with justification as model observer calculation are not yet a routine and potentially error prone. Results: Detectability index increased with signal size for all participants and was very consistent for 6 mm sized target while showing higher variability for 8 and 10 mm sized target. There was one order of magnitude between the lowest and the largest uncertainty estimation. Conclusions: This intercomparison helped define the state of the art of model observer performance computation and with thirteen participants, reflects openness and trust within the medical imaging community. The performance of a CHO with explicitly defined channels and a relatively large number of test images was consistently estimated by all participants. In contrast, the paper demonstrates that there is no agreement on estimating the variance of detectability in the training and testing setting.
  •  
11.
  • Barufaldi, Bruno, et al. (författare)
  • Computer simulations of case difficulty in digital breast tomosynthesis using virtual clinical trials
  • 2022
  • Ingår i: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 49:4, s. 2220-2232
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Virtual clinical trials (VCTs) require computer simulations of representative patients and images to evaluate and compare changes in performance of imaging technologies. The simulated images are usually interpreted by model observers whose performance depends upon the selection of imaging cases used in training evaluation models. This work proposes an efficient method to simulate and calibrate soft tissue lesions, which matches the detectability threshold of virtual and human readings. Methods: Anthropomorphic breast phantoms were used to evaluate the simulation of four mass models (I–IV) that vary in shape and composition of soft tissue. Ellipsoidal (I) and spiculated (II–IV) masses were simulated using composite voxels with partial volumes. Digital breast tomosynthesis projections and reconstructions of a clinical system were simulated. Channelized Hotelling observers (CHOs) were evaluated using reconstructed slices of masses that varied in shape, composition, and density of surrounded tissue. The detectability threshold of each mass model was evaluated using receiver operating characteristic (ROC) curves calculated with the CHO's scores. Results: The area under the curve (AUC) of each calibrated mass model were within the 95% confidence interval (mean AUC [95% CI]) reported in a previous reader study (0.93 [0.89, 0.97]). The mean AUC [95% CI] obtained were 0.94 [0.93, 0.96], 0.92 [0.90, 0.93], 0.92 [0.90, 0.94], 0.93 [0.92, 0.95] for models I to IV, respectively. The mean AUC results varied substantially as a function of shape, composition, and density of surrounded tissue. Conclusions: For successful VCTs, lesions composed of soft tissue should be calibrated to simulate imaging cases that match the case difficulty predicted by human readers. Lesion composition, shape, and size are parameters that should be carefully selected to calibrate VCTs.
  •  
12.
  • Bayisa, Fekadu, et al. (författare)
  • Statistical learning in computed tomography image estimation
  • 2018
  • Ingår i: Medical physics (Lancaster). - : John Wiley & Sons. - 0094-2405 .- 2473-4209. ; 45:12, s. 5450-5460
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: There is increasing interest in computed tomography (CT) image estimations from magneticresonance (MR) images. The estimated CT images can be utilized for attenuation correction, patientpositioning, and dose planning in diagnostic and radiotherapy workflows. This study aims to introducea novel statistical learning approach for improving CT estimation from MR images and to compare theperformance of our method with the existing model-based CT image estimation methods.Methods: The statistical learning approach proposed here consists of two stages. At the trainingstage, prior knowledge about tissue types from CT images was used together with a Gaussian mixturemodel (GMM) to explore CT image estimations from MR images. Since the prior knowledge is notavailable at the prediction stage, a classifier based on RUSBoost algorithm was trained to estimatethe tissue types from MR images. For a new patient, the trained classifier and GMMs were used topredict CT image from MR images. The classifier and GMMs were validated by using voxel-leveltenfold cross-validation and patient-level leave-one-out cross-validation, respectively.Results: The proposed approach has outperformance in CT estimation quality in comparison withthe existing model-based methods, especially on bone tissues. Our method improved CT image estimationby 5% and 23% on the whole brain and bone tissues, respectively.Conclusions: Evaluation of our method shows that it is a promising method to generate CTimage substitutes for the implementation of fully MR-based radiotherapy and PET/MRI applications
  •  
13.
  • Beaulieu, Luc, et al. (författare)
  • AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy
  • 2023
  • Ingår i: Medical physics (Lancaster). - : WILEY. - 0094-2405. ; 50:8, s. E946-E960
  • Tidskriftsartikel (refereegranskat)abstract
    • The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for Ir-192-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.
  •  
14.
  • Benmakhlouf, Hamza, et al. (författare)
  • Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams : A PENELOPE Monte Carlo study
  • 2014
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 41:4, s. 041711-
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To determine detector-specific output correction factors, k(Qclin,Qmsr)(fclin,fmsr) in 6 MV small photon beams for air and liquid ionization chambers, silicon diodes, and diamond detectors from two manufacturers. Methods: Field output factors, defined according to the international formalism published by Alfonso et al. [Med. Phys. 35, 5179-5186 (2008)], relate the dosimetry of small photon beams to that of the machine-specific reference field; they include a correction to measured ratios of detector readings, conventionally used as output factors in broad beams. Output correction factors were calculated with the PENELOPE Monte Carlo (MC) system with a statistical uncertainty (type-A) of 0.15% or lower. The geometries of the detectors were coded using blueprints provided by the manufacturers, and phase-space files for field sizes between 0.5 x 0.5 cm(2) and 10 x 10 cm(2) from a Varian Clinac iX 6 MV linac used as sources. The output correction factors were determined scoring the absorbed dose within a detector and to a small water volume in the absence of the detector, both at a depth of 10 cm, for each small field and for the reference beam of 10 x 10 cm(2). Results: The Monte Carlo calculated output correction factors for the liquid ionization chamber and the diamond detector were within about +/- 1% of unity even for the smallest field sizes. Corrections were found to be significant for small air ionization chambers due to their cavity dimensions, as expected. The correction factors for silicon diodes varied with the detector type (shielded or un-shielded), confirming the findings by other authors; different corrections for the detectors from the two manufacturers were obtained. The differences in the calculated factors for the various detectors were analyzed thoroughly and whenever possible the results were compared to published data, often calculated for different accelerators and using the EGSnrc MC system. The differences were used to estimate a type-B uncertainty for the correction factors. Together with the type-A uncertainty from the Monte Carlo calculations, an estimation of the combined standard uncertainty was made, assigned to the mean correction factors from various estimates. Conclusions: The present work provides a consistent and specific set of data for the output correction factors of a broad set of detectors in a Varian Clinac iX 6 MV accelerator and contributes to improving the understanding of the physics of small photon beams. The correction factors cannot in general be neglected for any detector and, as expected, their magnitude increases with decreasing field size. Due to the reduced number of clinical accelerator types currently available, it is suggested that detector output correction factors be given specifically for linac models and field sizes, rather than for a beam quality specifier that necessarily varies with the accelerator type and field size due to the different electron spot dimensions and photon collimation systems used by each accelerator model. (C) 2014 American Association of Physicists in Medicine.
  •  
15.
  •  
16.
  • Berggren, Karl, 1989-, et al. (författare)
  • Characterization of photon-counting multislit breast tomosynthesis
  • 2018
  • Ingår i: Medical Physics. - : John Wiley & Sons. - 2473-4209 .- 0094-2405.
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energyintegrating flat-panel detectors. Methods: The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. Results: The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the total detected spectrum. Scantimes ranged from 4 s to 16.5 s depending on voltage and current settings. Conclusions: The characterized system generates spectral tomosynthesis images with a dual-energy photon-counting detector. Measurements show a high DQE, enabling high image quality at a low dose, which is beneficial for low-dose applications such as screening. The single-scan spectral images open up for applications such as quantitative material decomposition and contrast-enhanced tomosynthesis. 
  •  
17.
  • Böck, Michelle (författare)
  • On adaptation cost and tractability in robust adaptive radiation therapy optimization
  • 2020
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 47:7, s. 2791-2804
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose In this paper, a framework for online robust adaptive radiation therapy (ART) is discussed and evaluated. The purpose of the presented approach to ART is to: (a) handle interfractional geometric variations following a probability distribution different from the a priori hypothesis, (b) address adaptation cost, and Methods A novel framework for online robust ART using the concept of Bayesian inference and scenario reduction is introduced and evaluated in a series of simulated cases on a one-dimensional phantom geometry. The initial robust plan is generated from a robust optimization problem based on either expected-value or worst-case optimization approach using the a priori hypothesis of the probability distribution governing the interfractional geometric variations. Throughout the course of treatment, the simulated interfractional variations are evaluated in terms of their likelihood with respect to the a priori hypothesis of their distribution and violation of user-specified tolerance limits by the accumulated dose. If an adaptation is considered, the a posteriori distribution is computed from the actual variations using Bayesian inference. Then, the adapted plan is optimized to better suit the actual interfractional variations of the individual case. This adapted plan is used until the next adaptation is triggered. To address adaptation cost, the proposed framework provides an option for increased adaptation frequency. Computational tractability in robust planning and ART is addressed by an approximation algorithm to reduce the size of the optimization problem. Results According to the simulations, the proposed framework may improve target coverage compared to the corresponding nonadaptive robust approach. In particular, Bayesian inference may be useful to individualize plans to the actual interfractional variations. Concerning adaptation cost, the results indicate that mathematical methods like Bayesian inference may have a greater impact on improving individual treatment quality than increased adaptation frequency. In addition, the simulations suggest that the concept of scenario reduction may be useful to address computational tractability in ART and robust planning in general. Conclusions The simulations indicate that the adapted plans may improve target coverage and OAR protection at manageable adaptation and computational cost within the novel framework. In particular, adaptive strategies using Bayesian inference appear to perform best among all strategies. This proof-of-concept study provides insights into the mathematical aspects of robustness, tractability, and ART, which are a useful guide for further development of frameworks for online robust ART.
  •  
18.
  • Candela-Juan, C., et al. (författare)
  • Dosimetric characterization of two radium sources for retrospective dosimetry studies
  • 2015
  • Ingår i: Medical physics (Lancaster). - : American Association of Physicists in Medicine: Medical Physics. - 0094-2405 .- 2473-4209. ; 42:5, s. 2132-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: During the first part of the 20th century, Ra-226 was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two Ra-226 sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose-effect studies. Methods: An 8 mg Ra-226 tube and a 10 mg Ra-226 needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiation transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a Ra-226 point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including gL(r), F(r,theta), Lambda, and s(K)] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that the uncertainty associated to the absorbed dose within the treatment volume is 10%-15%, whereas uncertainty of absorbed dose to distant organs is roughly 20%-25%. Conclusions: The results provided here facilitate retrospective dosimetry studies of Ra-226 using modern treatment planning systems, which may be used to improve knowledge on long term radiation effects. It is surely important for the epidemiologic studies to be aware of the estimated uncertainty provided here before extracting their conclusions.
  •  
19.
  • Das, Indra J., et al. (författare)
  • Report of AAPM Task Group 155 : Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions
  • 2021
  • Ingår i: Medical physics (Lancaster). - : John Wiley & Sons. - 0094-2405 .- 2473-4209. ; 48:10, s. E886-E921
  • Tidskriftsartikel (refereegranskat)abstract
    • Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Pal-mans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
  •  
20.
  • Dasu, Alexandru, et al. (författare)
  • Impact of variable RBE on proton fractionation
  • 2013
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 40:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To explore the impact of variable proton RBE on dose fractionation for clinically-relevant situations. A generic RBE=1.1 is generally used for isoeffect calculations, while experimental studies showed that proton RBE varies with tissue type, dose and LET.Material and methods: An analytical expression for the LET and α/β dependence of the LQ model has been used for proton simulations in parallel with the assumption of a generic RBE=1.1. Calculations have been performed for ranges of LET values and fractionation sensitivities to describe clinically-relevant cases, like the treatment of H&N and prostate tumors. Isoeffect calculations were compared with predictions from a generic RBE value and reported clinical results.Results: The generic RBE=1.1 appears to be a reasonable estimate for the proton RBE of rapidly growing tissues irradiated with low LET radiation. However, the use of a variable RBE predicts larger differences for tissues with low α/β (both tumor and normal) and at low doses per fraction. In some situations these differences may appear in contrast to the findings from photon studies highlighting the importance of accurate accounting for the radiobiological effectiveness of protons. Furthermore, the use of variable RBE leads to closer predictions to clinical results. Conclusions: The LET dependence of the RBE has a strong impact on the predicted effectiveness of fractionated proton radiotherapy. The magnitude of the effect is modulated by the fractionation sensitivity and the fractional dose indicating the need for accurate analyses both in the target and around it. Care should therefore be employed for changing clinical fractionation patterns or when analyzing results from clinical studies for this type of radiation.
  •  
21.
  • Eriksson, O., et al. (författare)
  • Robust automated radiation therapy treatment planning using scenario-specific dose prediction and robust dose mimicking
  • 2022
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 49:6, s. 3564-3573
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: We present a framework for robust automated treatment planning using machine learning, comprising scenario-specific dose prediction and robust dose mimicking. Methods: The scenario dose prediction pipeline is divided into the prediction of nominal dose from input image and the prediction of scenario dose from nominal dose, each using a deep learning model with U-net architecture. By using a specially developed dose–volume histogram–based loss function, the predicted scenario doses are ensured sufficient target coverage despite the possibility of the training data being non-robust. Deliverable plans may then be created by solving a robust dose mimicking problem with the predictions as scenario-specific reference doses. Results: Numerical experiments are performed using a data set of 52 intensity-modulated proton therapy plans for prostate patients. We show that the predicted scenario doses resemble their respective ground truth well, in particular while having target coverage comparable to that of the nominal scenario. The deliverable plans produced by the subsequent robust dose mimicking were showed to be robust against the same scenario set considered for prediction. Conclusions: We demonstrate the feasibility and merits of the proposed methodology for incorporating robustness into automated treatment planning algorithms. 
  •  
22.
  • Fan, Peng, et al. (författare)
  • Scatter and crosstalk corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators.
  • 2015
  • Ingår i: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 42:12, s. 6895-6911
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for (99m)Tc/(123)I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c).
  •  
23.
  • Georgi, Peter, et al. (författare)
  • Determination of intrinsic energy dependence of point-like inorganic scintillation detector in brachytherapy
  • 2024
  • Ingår i: Medical physics (Lancaster). - : WILEY. - 0094-2405.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Inorganic scintillation detectors (ISDs) are promising for in vivo dosimetry in brachytherapy (BT). ISDs have fast response, providing time resolved dose rate information, and high sensitivity, attributed to high atomic numbers. However, the conversion of the detector signal to absorbed dose-to-water is highly dependent on the energy spectrum of the incident radiation. This dependence is comprised of absorbed dose energy dependence, obtainable with Monte Carlo (MC) simulation, and the absorbed dose-to-signal conversion efficiency or intrinsic energy dependence requiring measurements. Studies have indicated negligible intrinsic energy dependence of ZnSe:O-based ISDs in Ir-192 BT. A full characterization has not been performed earlier.Purpose: This study characterizes the intrinsic energy dependence of ZnSe:O-based ISDs for kV X-ray radiation qualities, with energies relevant for BT.Methods: Three point-like ISDs made from fiber-coupled cuboid ZnSe:O-based scintillators were calibrated at the Swedish National Metrology Laboratory for ionizing radiation. The calibration was done in terms of air kerma free-in-air, K-air, in 13 X-ray radiation qualities, Q, from 25 to 300 kVp (CCRI 25-250 kV and ISO 4037 N-series), and in terms of absorbed dose to water, D-w, in a Co-60 beam, Q(0).The mean absorbed dose to the ISDs, relative to K-air and D-w, were obtained with the MC code TOPAS (Geant4) using X-ray spectra obtained with SpekPy software and laboratory filtration data and a generic Co-60 source.The intrinsic energy dependence was determined as a function of effective photon energy, E-eff, (relative to Co-60).The angular dependence of the ISD signal was measured in a 25 kVp (0.20 mm Al HVL) and 135 kVp beam (0.48 mm Cu HVL), by rotating the ISDs 180 degrees around the fiber's longitudinal axis (perpendicular to the beam). A full 360 degrees was not performed due to setup limitations. The impact of detector design was quantified with MC simulation.ResultsAbove 30 keV E-eff the intrinsic energy dependence varied with less than 5 +/- 4% from unity for all detectors (with the uncertainty expressed as the mean of all expanded measurement uncertainties for individual E-eff above 30 keV, k = 2). Below 30 keV, it decreased with up to 17% and inter-detector variations of 13% were observed, likely due to differences in detector geometry not captured by the simulations using nominal geometry. In the 25 kVp radiation quality, the ISD signal varied with 24% over a similar to 45 degrees rotation. For 135 kVp, the corresponding variation was below 3%. Assuming a 0.05 mm thicker layer of reflective paint around the sensitive volume changed the absorbed dose with 6.3% at the lowest E-eff, and with less than 2% at higher energies.ConclusionThe study suggests that the ISDs have an intrinsic energy dependence relative to Co-60 lower than 5 +/- 4% in radiation qualities with E-eff > 30 keV. Therefore, they could in principle be calibrated in a Co-60 beam quality and transferred to such radiation qualities with correction factors determined only by the absorbed dose energy dependence obtained from MC simulations. This encourages exploration of the ISDs' applications in intensity modulated BT with Yb-169 or other novel intermediate energy isotopes.
  •  
24.
  • Ghazal, Mohammed, et al. (författare)
  • 6-MV small field output factors: intra-/intermachine comparison and implementation of TRS-483 using various detectors and several linear accelerators
  • 2019
  • Ingår i: Medical physics (Lancaster). - : WILEY. - 0094-2405 .- 2473-4209. ; 46:11, s. 5350-5359
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose To investigate the applicability of output correction factors reported in TRS-483 on 6-MV small-field detector-reading ratios using four solid-state detectors. Also, to investigate variations in 6-MV small-field output factors (OF) among nominally matched linear accelerators (linacs). Methods The TRS-483 Code of Practice (CoP) introduced and provided output correction factors to be applied to measured detector-reading ratios to obtain OFs for several small-field detectors. Detector readings for 0.5 cm x 0.5 cm to 8 cm x 8 cm fields were measured and normalized to that of 10 cm x 10 cm field giving the detector-reading ratios. Three silicon diodes, IBA PFD, IBA EFD (IBA, Schwarzenbruck, Germany), PTW T60017, and one microdiamond, PTW T60019 (PTW, Freiburg, Germany), were used. Output correction factors from the CoP were applied to measured detector-reading ratios. Measurements were performed on six Clinac and six TrueBeam linacs (Varian Medical Systems, Palo Alto, USA). An investigation of the relationship between the size of small fields and corresponding detector-reading ratio among the linacs was performed by measuring lateral dose profiles for 0.5 cm x 0.5 cm fields to determine the full width half maximum (FWHM). The relationship between the linacs focal spot size and the small-field detector-reading ratio was investigated by measuring 10 cm x 10 cm lateral dose profiles and determining the penumbra width reflecting the focal spot size. Measurement geometry was as follows: gantry angle = 0 degrees, collimator angle = 0 degrees, source-to surface distance (SSD) = 90 cm, and depth in water = 10 cm. Results For a given linac and 0.5 cm x 0.5 cm field, the deviations in detector-reading ratios among the detectors were 9%-15% for the Clinacs and 4%-5% for the TrueBeams. Use of output correction factors reduced these deviations to 6%-12% and 3%-4%, respectively. For field sizes equal to or larger than 0.8 cm x 0.8 cm, the deviations were corrected to 1% using output correction factors for both Clinacs and TrueBeams. For a given detector and 0.5 cm x 0.5 cm field, the deviations in detector-reading ratios among the linacs were 11%-17% for the Clinacs and 5-6% for the TrueBeams. For 1 cm x 1 cm the deviations were 1%-2% for Clinacs and 1% for TrueBeams. For field sizes larger than 1 cm x 1 cm the deviations were within 1% for both Clinacs and TrueBeams. No relationship between FWHMs and detector-reading ratios for 0.5 cm x 0.5 cm was observed. For Clinacs, larger 10 cm x 10 cm penumbra width yielded lower 0.5 cm x 0.5 cm detector-reading ratio indicating an effect of the focal spot size. For TrueBeams, the spread of penumbra widths was lower compared to Clinacs and no similar relationship was observed. Conclusions Output correction factors from the TRS-483 CoP are not sufficient for accurate determination of OF for 0.5 cm x 0.5 cm fields but are applicable for 0.8 cm x 0.8 cm to 8 cm x 8 cm fields. Nominally matched Clinacs and TrueBeams show large differences in detector-reading ratios for fields smaller than 1 cm x 1 cm.
  •  
25.
  • Giantsoudi, D., et al. (författare)
  • A gEUD-based inverse planning technique for HDR prostate brachytherapy : Feasibility study
  • 2013
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 40:4, s. 041704-
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D-10 or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 345
Typ av publikation
tidskriftsartikel (315)
konferensbidrag (25)
forskningsöversikt (4)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (298)
övrigt vetenskapligt/konstnärligt (47)
Författare/redaktör
Karlsson, Mikael (19)
Andreo, P (19)
Carlsson Tedgren, Ås ... (17)
Ahnesjö, Anders (16)
Danielsson, Mats (15)
Poludniowski, G (14)
visa fler...
Maguire Jr., Gerald ... (13)
Noz, Marilyn E. (13)
Papanikolaou, N (13)
Knöös, Tommy (11)
Nyholm, Tufve (11)
Mavroidis, Panayioti ... (10)
Mavroidis, P (10)
Alm Carlsson, Gudrun (10)
Ceberg, Crister (10)
Båth, Magnus, 1974 (9)
Ljungberg, Michael (7)
Ahnesjö, Anders, 195 ... (7)
Toma-Daşu, Iuliana (7)
Bujila, R (7)
Bernhardt, Peter, 19 ... (7)
Brahme, Anders (6)
Bornefalk, Hans (6)
Huq, MS (6)
Palmans, H (6)
Seuntjens, J (6)
Lundqvist, Hans (5)
Carlsson Tedgren, Ås ... (5)
Nilsson, Per (5)
Traneus, Erik (5)
Zeleznik, Michael P. (5)
Andersson, Jonas, 19 ... (5)
Nowik, P. (5)
Dasu, Alexandru (5)
Gutierrez, A. (4)
Brahme, A (4)
Verhaegen, Frank (4)
Petersson, Kristoffe ... (4)
Strand, Sven-Erik (4)
Weber, Lars (4)
Olsson, Lars E (4)
Sandborg, Michael (4)
Danielsson, Mats, Pr ... (4)
Kindblom, Jon, 1969 (4)
Timberg, Pontus (4)
Bassler, Niels (4)
Månsson, Lars Gunnar ... (4)
Mourtada, Firas (4)
Rivard, Mark J. (4)
Thomson, Rowan M. (4)
visa färre...
Lärosäte
Karolinska Institutet (114)
Kungliga Tekniska Högskolan (73)
Lunds universitet (57)
Uppsala universitet (42)
Linköpings universitet (40)
Umeå universitet (39)
visa fler...
Stockholms universitet (33)
Göteborgs universitet (24)
Chalmers tekniska högskola (3)
Örebro universitet (2)
Högskolan i Borås (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (342)
Odefinierat språk (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (135)
Naturvetenskap (91)
Teknik (43)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy