SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0168 1923 "

Sökning: L773:0168 1923

  • Resultat 1-25 av 159
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Halldin, Sven, et al. (författare)
  • Energy, water and carbon exchange in a boreal forest landscape - NOPEX experiences
  • 1999
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 98-9:SI, s. 5-29
  • Forskningsöversikt (refereegranskat)abstract
    • The role of the land surface in controlling climate is still underestimated and access to information from the boreal-forest zone is instrumental to improve this situation. This motivated the organisation of NOPEX (Northern hemisphere climate-Processes land-surface Experiment) in the southern part of the European boreal zone. This paper summarises results from NOPEX in its first phase, dealing with spring- and summertime conditions. Two concentrated field efforts (CFE1 on 27 May-23 June 1994, CFE2 on 18 April-14 July 1995) were carried out with coordinated measurements of energy, water, and CO2 budgets at 13 ground-based sites and at various airborne platforms. Flux aggregation was a central issue in the heterogeneous, patchy NOPEX landscape. It is shown that simple land-use-weighted averaging of fluxes from fields/forests/lakes agree well with regional fluxes. Momentum fluxes can be parameterised over the whole area with a roughness length of approximately 1.5 m, whereas fluxes of sensible heat and other scalars depend on the averaging scale, Local measurements of soil moisture can be classified and meaningful averages can be deduced with a 1 km resolution. Lakes play an important role and differs in both diurnal and annual cycles compared to the forests and fields. Multiannual data from an agricultural and a forest site has allowed quantification and modelling of seldom occuring phenomena. One unexpected result was that the Norunda Common forest acted as a source and not a sink of CO2. The successful completion of CFE1-2 and a pilot winter campaign (CFE3) will lead NOPEX into its final phase, devoted to wintertime processes. Measurements and model results reside in SINOP. the System for Information in NOPEX, open for NOPEX participants. Data from CFE1 and CFE2 are released on CD as an integrated part of this Special Issue. (C) 1999 Elsevier Science B.V. All rights reserved.
  •  
3.
  • Lankreijer, Harry, et al. (författare)
  • Evaporation and storage of intercepted rain analysed by comparing two models applied to a boreal forest
  • 1999
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 98-99, s. 595-604
  • Tidskriftsartikel (refereegranskat)abstract
    • Rainfall and throughfall were measured during the summer of 1995. Rainfall interception is often simulated by a version of the well-known Rutter-Gash analytical model. In this study this model was compared to a model based on an exponential saturation equation. The concept of the ‘minimum method' for deriving canopy storage capacity and free throughfall coefficient by the Leyton-analysis, is compared to the concept of maximum storage capacity by reversing the models. Measured evaporation rate during rain events was found to be lower than simulated by the Penman equation using different known formulations for aerodynamic resistance. The concept of a high internal canopy resistance and decoupling of the canopy from the atmosphere should be analysed further in order to explain low evaporation during rainfall.
  •  
4.
  • Lundin, Lars-Christer, et al. (författare)
  • Continuous long-term measurements of soil-plant-atmosphere variables at a forest site
  • 1999
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 98-99, s. 53-73
  • Tidskriftsartikel (refereegranskat)abstract
    • It is a major challenge in modem science to decrease the uncertainty in predictions of global climate change. One of the largest uncertainties in present-day global climate models resides with the understanding of processes in the soil-vegetation-atmosphere-transfer (SVAT) system. Continuous, long-term data are needed in order to correctly quantify balances of water, energy and CO2 in this system and to correctly model it. It is the objective of this paper to demonstrate how a combined system of existing sensor, computer, and network technologies could be set up to provide continuous and reliable long-term SVAT-process data from a forested site under almost all environmental conditions. The Central Tower Site (CTS) system was set up in 1993-1994 in a 25 m high boreal forest growing on a highly heterogeneous till soil with a high content of stones and blocks. It has successfully monitored relevant states and fluxes in the system, such as atmospheric fluxes of momentum, heat, water vapour and CO2, atmospheric profiles of temperature, water vapour, CO2, short-and long-wave radiation, heat storage in soil and trees, sap-dow and a variety of ecophysiological properties, soil-water contents and tensions, and groundwater levels, rainfall and throughfall. System uptime has been more than 90% for most of its components during the first 5 years of operation. Results from the first 5 years of operation include e.g., budgets for energy, water and CO2, information on important but rarely occurring events such as evaporation from snow-covered canopies, and reactions of the forest to extreme drought. The carbon budget shows that the forest may be a sink of carbon although it is still growing. The completeness of the data has made it possible to test the internal consistency of SVAT models. The pioneering set-up at the CTS has been adopted by a large number of SVAT-monitoring sites around the world. Questions concerning tower maintenance, long-term calibration plans, maintenance of sensors and data-collection system, and continuous development of the computer network to keep it up to date are, however, only partly of interest as a research project in itself. It is thus difficult to get it funded from usual research-funding agencies. The full value of data generated by the CTS system can best be appreciated after a decade or more of continuous operation. Main uses of the data would be to evaluate how SVAT models handle the natural variability of climate conditions, quantification of water. carbon and energy budgets during various weather conditions, rind development of new parameterisation schemes in global and regional climate models. 
  •  
5.
  • Lundin, Lars-Christer, et al. (författare)
  • System of information in NOPEX : retrieval, use, and query of climate data
  • 1999
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 98-99, s. 31-51
  • Tidskriftsartikel (refereegranskat)abstract
    • The uncertainty in climate predictions caused by improper understanding of the role of the land-surface is underestimated and easy access to data from a series of landscape types around the globe would improve this. Such data exist from a series of large-scale land-surface experiments but access to them has been difficult. It is the objective of this paper to demonstrate how the System for Information in NOPEX (SINOP) could be set up to provide a combination of data archive and tool for executing various time-limited and long-term field activities. Setting up and running SINOP involved both technical and psychological issues. The major technical problems were associated with (i) the uninterrupted flow of large data volumes, (ii) data homogeneity, and (iii) the exploding technology development. The psychological and organisational problems were more difficult to tackle than the technical problems. Funding agencies assumed somebody else would take care of data archiving and documentation, academic organisations have difficulties to compete with the private market for database managers, many individual scientists were unwilling to deliver their datasets and, especially, unwilling to document them. It is suggested that changes in attitudes from scientists, academic organisations, and publishers are needed to give credit for the publication of good datasets and for the production of good documentation about them. CDs incorporating a subset of SINOP with well-documented datasets from NOPEX operations in 1994 and 1995 are published together with this NOPEX Special Issue. The CDs include climate variables, such as radiation, fluxes of heat, momentum, and water vapour, and various energy storage terms as well as hydrological variables from 13 sites within the central-Swedish NOPEX region, at the southern boundary of the boreal zone. The publication of these data is seen as a step towards giving data-set owners proper and citeable credit for their work.
  •  
6.
  • Motovilov, Yuri G., et al. (författare)
  • Validation of a distributed hydrological model against spatial observations
  • 1999
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 98-99, s. 257-277
  • Tidskriftsartikel (refereegranskat)abstract
    • In connection with climate change studies a new hydrologic field has evolved - regional hydrological modelling or hydrologic macro modelling, which implies repeated application of a model everywhere within a region using a global set of parameters. The application of a physically based distributed hydrological model ECOMAG to river basins within the NOPEX southern region with this purpose in mind is presented. The model considers the main processes of the land surface hydrological cycle: infiltration, evapotranspiration, heat and water regime of the soil, snowmelt, formation of surface, subsurface and river runoff and groundwater. The spatial integration of small and meso-scale non-homogeneity of the land surface is a central issue both for the definition of fundamental units of the model structure and for determination of representative values for model validation. ECOMAG is based on a uniform hydrological (or landscape) unit representation of the river basin, which reflects topography, soil, vegetation and land use. As a first step the model was calibrated using standard meteorological and hydrological data for 7 years from regular observation networks for three basins. An additional adjustment of the soil parameters was performed using soil moisture and groundwater level data from five small experimental basins. This step was followed by validation of the model against runoff for 14 years from six other drainage basins, and synoptic runoff and evapotranspiration measurements performed during two concentrated field efforts (CFEs) of the NOPEX project in 1994 and 1995. The results are promising and indicate directions for further research. 
  •  
7.
  • Agbohessou, Yélognissè, et al. (författare)
  • To what extent are greenhouse-gas emissions offset by trees in a Sahelian silvopastoral system?
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923. ; 343
  • Tidskriftsartikel (refereegranskat)abstract
    • To assess the extent to which trees in a semi-arid silvopastoral system (SPS) can offset the greenhouse-gas (GHG) emissions of the system's livestock, this study used two process-based models (STEP-GENDEC-N2O and DynACof) to simulate 9 years of agricultural activity and resulting emissions in a SPS that has been operating in sahelian Senegal. STEP-GENDEC-N2O simulated soil N2O and CO2 fluxes, plus growth of the herbaceous layer, while DynACof focused on the tree layer. Outputs from the models included simulated time series of vegetative growth, water fluxes, and emissions. This output was validated through the use of published data, and measurements that were made at the SPS. Overall, the outputs from STEP-GENDEC-N2O agreed well with validation data for water fluxes, soil N, soil C, herbaceous biomass, and N2O emissions. Good agreement was also found between the measured fluxes of the SPS ecosystem, and the simulated values that were generated by combining STEP-GENDEC-N2O's simulations (of the herbaceous layer's heterotrophic respiration, autotrophic respiration, and gross primary productivity (GPP)) with DynACof's simulations of the tree layer's autotrophic respiration and GPP. Among the insights gained from the simulations was that in this SPS's sandy soils, nitrification was the dominant process that leads to N2O emissions. Our results show that the trees, at their current density (81 ha−1) offset 18 % to 41 % of the GHG emissions from livestock. With further development, the model set-up can be used for estimating the GHG offset at other tree densities, and will be useful for guiding future policies regarding climate-change adaptation and mitigation in the management of the Sahel's SPSs.
  •  
8.
  • Ahmed, Mukhtar (författare)
  • Simulation of evapotranspiration and yield of maize: An Inter-comparison among 41 maize models
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 333
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate simulation of crop water use (evapotranspiration, ET) can help crop growth models to assess the likely effects of climate change on future crop productivity, as well as being an aid for irrigation scheduling for today's growers. To determine how well maize (Zea mays L.) growth models can simulate ET, an initial inter-comparison study was conducted in 2019 under the umbrella of AgMIP (Agricultural Model Inter-Comparison and Improvement Project). Herein, we present results of a second inter-comparison study of 41 maize models that was conducted using more comprehensive datasets from two additional sites -Mead, Nebraska, USA and Bushland, Texas, USA. There were 20 treatment-years with varying irrigation levels over multiple seasons at both sites. ET was measured using eddy covariance at Mead and using large weighing lysimeters at Bushland. A wide range in ET rates was simulated among the models, yet several generally were able to simulate ET rates adequately. The ensemble median values were generally close to the observations, but a few of the models sometimes performed better than the median. Many of the models that did well at simulating ET for the Mead site did poorly for drier, windy days at the Bushland site, suggesting they need to improve how they handle humidity and wind. Additional variability came from the approaches used to simulate soil water evaporation. Fortunately, several models were identified that did well at simulating soil water evaporation, canopy transpiration, biomass accumulation, and grain yield. These models were older and have been widely used, which suggests that a larger number of users have tested these models over a wider range of conditions leading to their improvement. These revelations of the better approaches are leading to model improvements and more accurate simulations of ET.
  •  
9.
  • Arnqvist, Johan, et al. (författare)
  • Examination of the mechanism behind observed canopy waves
  • 2016
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 218, s. 196-203
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we document the existence of wave-like motions above a forest canopy using data taken from a 138 m high tower placed within a forest Characteristics of the waves are examined in relation to their possible effects on wind energy. It is shown that when the wave signal is relatively clean, the phase lag between horizontal and vertical velocity is close to 90, which limits the contribution of the waves to the downward momentum flux. Numerical solutions of the linear wave equations agree with measurements in terms of wave period and the vertical shape of the wave amplitude. Linear analysis show that shear instability is the cause of unstable wave growth, and that the fastest growing unstable wave number typically has a period of 10-100 s. In addition to the shear instability, the linear analysis predicts that under certain conditions instabilities of the Holmboe kind can develop over forests.
  •  
10.
  • Aubinet, M., et al. (författare)
  • Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests
  • 2010
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 150:5, s. 655-664
  • Tidskriftsartikel (refereegranskat)abstract
    • The ADVEX project involved conducting extensive advection measurements at three sites, each with a different topography. One goal of the project was to measure the [CO2] balance under night-time conditions, in an attempt to improve NEE estimates. Four towers were arranged in a square around a main tower, with the sides of the square about 100 m long. Equipped with 16 sonic anemometers and [CO2] sampling points, the towers were installed to measure vertical and horizontal advection of [CO2]. Vertical turbulent fluxes were measured by an eddy covariance system at the top of the main tower. The results showed that horizontal advection varied greatly from site to site and from one wind sector to another, the highest values being reached when there were large friction velocities and fairly unstable conditions. There was less variation in vertical advection, the highest values being reached when there were low friction velocities and stable conditions. The night-time NEE estimates deduced from the mass balance were found to be incompatible with biologically driven fluxes because (i) they varied strongly from one wind sector to another and this variation could not be explained in terms of a response of the biologic flux to climate, (ii) their order of magnitude was not realistic and (iii) they still showed a trend vs. friction velocity. From a critical analysis of the measurement and data treatment we concluded that the causes of the problem are related to the representativeness of the measurement (control volume size, sampling resolution) or the hypotheses underlying the derivation of the [CO2] mass balance (ignoring the horizontal turbulent flux divergence). This suggests that the improvement of eddy flux measurements by developing an advection completed [CO2] mass balance at night would be practically difficult. (C) 2010 Elsevier B.V. All rights reserved.
  •  
11.
  • Axelsson, SRJ, et al. (författare)
  • Tree-heights derived from radar profiles over boreal forests
  • 1999
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 98-9, s. 427-435
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, results from helicopter-borne NOPEX-measurements over a boreal forest using a multi-band radar profiler are presented. Comparisons are made between tree-height profiling responses at three different frequency bands (5, 14 and 35 GHz). Values derived from radar profiles are also compared with maximum tree-height, and stem volume per hectare derived from ground-based measurements made in circular plots below the Eight track. The range response of a radar profiler and its relationship to the foliage back-scattering and stem volume is modelled and discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
  •  
12.
  • Bader, Martin K.-F., et al. (författare)
  • Less pronounced drought responses in ring-porous than in diffuse-porous temperate tree species
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier. - 0168-1923 .- 1873-2240. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Tree species differ in their physiological responses to drought, but the underlying causes are often unclear. Here we explored responses of radial growth to centennial drought events and sap flow (Fs) to seasonal drought in four mixed forests on either moist or drier sites in northwestern Switzerland. While the diffuse-porous species (Fagus sylvatica, Prunus avium, Tilia platyphyllos) showed marked growth reductions in 1976 and 2003, two known marker years for severe drought, growth of the two ring-porous species (Quercus petraea and Fraxinus excelsior) was less severely affected. During a dry early to midsummer, diffuse-porous species strongly reduced Fs at the two drier sites but not (or less so) at the two moister sites. Regardless of soil moisture availability, the deep- rooting, ring-porous trees invariably down-regulated Fs to 60–70% of their maxima in response to vapour pressure deficit (VPD) and maintained similar fluxes across sites, irrespective of upper soil moisture conditions. A generalised additive model of normalised Fs as a function of VPD and soil matric potential yielded a drought- sensitivity ranking of Fs led by the two insensitive ring-porous species followed by the diffuse-porous trees (ordered by increasing sensitivity: Fraxinus excelsior < Quercus petraea < Prunus avium < Acer pseudoplatanus < Fagus sylvatica < Tilia platyphyllos). In conclusion, ring-porous tree species exhibited stronger VPD-driven stomatal control over Fs, and tree-ring formation was less sensitive to severe drought than in their neighbouring diffuse-porous species. The Fs regulation explained the greater drought tolerance of the ring-porous trees.
  •  
13.
  •  
14.
  • Beldring, S, et al. (författare)
  • Distribution of soil moisture and groundwater levels at patch and catchment scales
  • 1999
  • Ingår i: AGRICULTURAL AND FOREST METEOROLOGY. - : ELSEVIER SCIENCE BV. - 0168-1923. ; 98-9, s. 305-324
  • Tidskriftsartikel (refereegranskat)abstract
    • This study is a contribution to the northern hemisphere climate processes land surface experiment (NOPEX). Its purpose is to investigate the spatial variability of groundwater levels and soil moisture content at different scales in a landscape dominated b
  •  
15.
  • Bhalerao, Rishikesh P. (författare)
  • Differences between four sympatric subtropical tree species in the interactive effects of three environmental cues on leaf-out phenology
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic warming is currently changing the spring phenology of extratropical trees, and this has several important effects on the trees and ecosystems. The major climatic cues regulating the spring phenology are winter chilling, spring forcing, and photoperiod. The interactions between these three remain largely unstudied because most studies concentrate on the effects of one cue, or maximally two, at a time. We studied the effects and interactions of chilling duration, forcing temperature, and forcing photoperiod simultaneously in four subtropical tree species. The main emphasis in our experiments was on the interaction of chilling duration and forcing temperature. The existence of this interaction was suggested in the 'Vegis theory', put forward decades ago but largely forgotten since. We also introduced a novel method for testing the theory experimentally. We found support for the Vegis theory in two of the four species examined. In the other two species the leaf-out timing was largely controlled by spring forcing. The effects of photoperiod were generally minor. Our results show that there are major differences between sympatric subtropical tree species in their phenological responses to environmental cues. These differences need to be addressed in the development of process-based tree phenology models. Our results further suggest that different subtropical trees respond differently to climatic warming because of differences related to the Vegis theory. This hypothesis remains to be tested in further studies.
  •  
16.
  • Björklund, Jesper, et al. (författare)
  • Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc
  • 2019
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 271, s. 214-224
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Elsevier B.V. A tree's radial growth sequence can be thought of as an aggregate of different growth components such as age and size limitations, presence or absence of disturbance events, continuous impact of climate variability and variance induced by unknown origin. The potentially very complex growth patterns with prominent temporal and spatial variability imply that our understanding of climate-vegetation feedbacks essentially benefits from the expansion of large tree ring networks into data-poor regions, and our ability to disentangle growth constraints by comparing ring series at multiple scales. In this study, we analyze Central-Eastern Europe's most substantial assemblage of primary Norway spruce forests found in the Carpathian arc. The vast data set, >10,000 tree-ring series, is stratified along a prominent gradient in climate response space over four separate landscapes. We integrated curve intervention detection and dendroclimatic standardization to decompose tree growth variance into climatic, disturbance and residual components to explore the behavior of the components over increasingly larger spatial hierarchies. We show that the residual variance of unknown origin is the most prominent variance in individual Carpathian spruce trees, but at larger spatial hierarchies, climate variance dominates. The variance induced by climate was further explored with common correlation analyses, growth response to extreme climate years and forward modeling of tree growth to identify leading modes of climate response, and potentially non-linear and mixed climate response patterns. We find that the climatic response of the different forest landscapes overall can be described as an asymptotic response to June and July temperatures, most likely intermixed with influence from winter precipitation. In the collection of landscapes, Southern Romania stands out as being the least temperature sensitive and most likely exhibiting the most complicated mixed temperature and moisture limitation.
  •  
17.
  • Boudreault, Louis-Etienne, et al. (författare)
  • A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests
  • 2015
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 201, s. 86-97
  • Tidskriftsartikel (refereegranskat)abstract
    • The difficulty of obtaining accurate information about the canopy structure is a current limitation towards higher accuracy in numerical predictions of the wind field in forested terrain. The canopy structure in computational fluid dynamics is specified through the frontal area density and this information is required for each grid point in the three-dimensional computational domain. By using raw data from aerial LiDAR scans together with the Beer-Lambert law, we propose and test a method to calculate and grid highly variable and realistic frontal area density input. An extensive comparison with ground-based measurements of the vertically summed frontal area density (or plant area index) and tree height was used to optimize the method, both in terms of plant area index magnitude and spatial variability. The resolution of the scans was in general low (<2.5 reflections m(-2)). A decrease of the resolution produced an increasing systematic underestimation of the spatially averaged tree height, whereas the mean plant area index remained insensitive. The gridded frontal area density and terrain elevation were used at the lower boundary of wind simulations in a 5 km x 5 km area of a forested site. The results of the flow simulations were compared to wind measurements using a vertical array of sonic anemometers. A good correlation was found for the mean wind speed of two contrasting wind directions with different influences from the upstream forest. The results also predicted a high variability on the horizontal and vertical mean wind speed, in close correlation with the canopy structure. The method is a promising tool for several computational fluid dynamics applications requiring accurate predictions of the near-surface wind field. (C) 2014 The Authors. Published by Elsevier B.V.
  •  
18.
  • Bylund, Helena (författare)
  • Larval crowding during an insect outbreak reduces herbivory pressure on preferred shrubs in a warmer environment
  • 2018
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 263, s. 180-187
  • Tidskriftsartikel (refereegranskat)abstract
    • With warming climate many species are predicted to shift their distributions toward the poles. However, climate change models developed to predict species distributions do not always incorporate interactions between them. The northerly shift of the boreal forest and associated dwarf shrub communities will be directly affected by warming. But warming will also indirectly affect plant communities via impacts on the intensity and frequency of associated insect outbreaks. We present a general model exploring plant host herbivory in response to the balance between insect crowding, host consumption and climate. We examined how these factors dictate the feeding preference of Epirrita autumnata larvae during an outbreak on dwarf shrub vegetation in Sub-arctic Fennoscandia. Data were collected from an outdoor experiment investigating future climate change scenarios (elevated CO2 and temperature) on the dwarf shrub community that included deciduous (Vaccinium myrtillus) and evergreen species (V. vitis-idaea and Empetrum nigrum). We observed that larval crowding was independent of treatment under outbreak conditions. We also tested and confirmed model predictions that larvae would prefer monospecific stands of either deciduous shrubs or its evergreen competitors. For current climate conditions, larvae had a preference to consume more deciduous shrubs in mixed stands. However, at elevated temperature bilberry consumption and herbivore pressure was lower, particularly in mixed stands. Our results show that during future warming, E. autumnata herbivory could promote the success of thermophile deciduous species and possible northward migration. Insect behaviour and preferences should therefore be considered when predicting future vegetation movements responding to warming.
  •  
19.
  • Campbell, David, et al. (författare)
  • Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 308
  • Tidskriftsartikel (refereegranskat)abstract
    • Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).
  •  
20.
  • Carrasco-Molina, Tania, et al. (författare)
  • Validation and parametrization of the soil moisture index for stomatal conductance modelling and flux-based ozone risk assessment of Mediterranean plant species
  • 2024
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923. ; 354
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mediterranean region chronically experiences high levels of tropospheric ozone (O3) that can affect the health of vegetation. However, limiting plant growing conditions, such as low soil moisture, may restrict the stomatal phytotoxic ozone dose (POD) absorbed by vegetation, modulating O3 detrimental effects. Atmospheric chemistry transport models that estimate POD for O3 risk assessment of effects on vegetation species, such as the European Monitoring and Evaluation Programme (EMEP), have adopted the soil moisture index (SMI) to consider the influence of soil moisture on POD. The objectives of this study were the parametrization and validation of the SMI effect on stomatal conductance (gs) for improving the POD estimation and O3 risk assessment for different vegetation species under water-limiting growing conditions, using field data collected in Italy and Spain and a literature review. The modelled SMI from EMEP proved to be a good indicator of soil moisture dynamics across sites and years, although it showed a general tendency to overestimate soil moisture availability for plants, particularly in the driest seasons. New parametrizations derived for modelling SMI effects on gs under Mediterranean conditions proposed in this study stress the importance of using species-specific parameters for species showing contrasting water-saving strategies in contrast of the current approach of using a simple relation between SMI and gs for all the species. Furthermore, gs modelling parametrizations based on soil water potential (SWP) were found to be more suitable than SMI for local scale estimation of POD under water-limiting conditions. Further consideration of rooting depth and distribution will be required in the future to determine the soil depth at which the soil moisture should be measured in POD modelling, since these features represent one of the most important uncertainties affecting the estimation of POD that could not be addressed with the present database.
  •  
21.
  • Chi, Jinshu (författare)
  • Adjustment of CO2 flux measurements due to the bias in the EC150 infrared gas analyzer
  • 2019
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 276
  • Tidskriftsartikel (refereegranskat)abstract
    • During the Regional Approaches to Climate Change (REACCH) program, eddy covariance monitoring over agricultural fields were used to estimate annual carbon and water budgets in the inland Pacific Northwest. Here, we assess the effect of a bias in the high-frequency CO2 concentration measurements using the Campbell Scientific EC150 infra-red gas analyzer on the CO2 fluxes and field-scale carbon balances. The bias stems from using a lower frequency temperature measurement to calculate the CO2 density, which misses higher frequency temperature fluctuations. To generate the bias adjustment, data were collected over four similar agricultural sites as part of the Long-Term Agroecosystem Research network for multiple months using the same four instrument sets used in the REACCH project. The difference between the high-frequency and low-frequency CO2 fluxes were regressed against the kinematic heat fluxes to generate a correction equation for each instrument set, which were applied to the historical REACCH data to determine the effect of the bias on the measured and gap-filled flux values. The re-calculated positive biases in the measured fluxes were 40 gC-CO(2)m(-2) yr(-1) to 126 gC-CO(2)m(-2) yr-1, indicating greater losses to the atmosphere than initially estimated. Once gap-filled, three out of fourteen site-years switched from weak carbon sinks to weak carbon sources. When the carbon exported via harvest was included in the budget calculation the bias correction still impacted the source/sink strength but did not change the sign of the carbon balance. Overall, the total net ecosystem exchange decreased between 300-470 gC-CO(2)m(-2) per site (29-46%) over the 4 crop-years from the bias adjustment process.
  •  
22.
  • Chi, Jinshu, et al. (författare)
  • Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 306
  • Tidskriftsartikel (refereegranskat)abstract
    • The forest floor provides an important interface of soil-atmosphere CO2 exchanges but their controls and contributions to the ecosystem-scale carbon budget are uncertain due to measurement limitations. In this study, we deployed eddy covariance systems below- and above-canopy to measure the spatially integrated net forest floor CO2 exchange (NFFE) and the entire net ecosystem CO2 exchange (NEE) at two mature contrasting stands located in close vicinity in boreal Sweden. We first developed an improved cospectra model to correct below-canopy flux data. Our empirical below-canopy cospectra models revealed a greater contribution of large- and small-scale eddies in the trunk space compared to their distribution in the above-canopy turbulence cospectra. We found that applying the above-canopy cospectra model did not affect the below-canopy annual CO2 fluxes at the sparse pine forest but significantly underestimated fluxes at the dense mixed spruce-pine stand. At the mixed spruce-pine stand, forest floor respiration (Rff) was higher and photosynthesis (GPPff) was lower, leading to a 1.4 times stronger net CO2 source compared to the pine stand. We further found that drought enhanced Rff more than GPPff, leading to increased NFFE. Averaged across the six site-years, forest floor fluxes contributed 82% to ecosystem-scale respiration (Reco) and 12% to gross primary production (GPP). Since the annual GPP was similar between both stands, the considerable difference in their annual NEE was due to contrasting Reco, the latter being primarily driven by the variations in NFFE. This implies that NFFE acted as the driver for the differences in NEE between these two contrasting stands. This study therefore highlights the important role of forest floor CO2 fluxes in regulating the boreal forest carbon balance. It further calls for extended efforts in acquiring high spatiotemporal resolution data of forest floor fluxes to improve predictions of global change impacts on the forest carbon cycle.
  •  
23.
  • Chi, Jinshu, et al. (författare)
  • The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden
  • 2019
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 274, s. 29-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal forests exchange large amounts of carbon dioxide (CO2) with the atmosphere. A managed boreal landscape usually comprises various potential CO2 sinks and sources across forest stands of varying age classes, clear-cut areas, mires, and lakes. Due to this heterogeneity and complexity, large uncertainties exist regarding the net CO2 balance at the landscape scale. In this study, we present the first estimate of the net CO2 exchange over a managed boreal landscape (∼68 km2) in northern Sweden, based on tall tower eddy covariance measurements. Our results suggest that from March 1, 2016 to February 28, 2018, the heterogeneous landscape was a net CO2 sink with a 2-year mean uptake of −87 ± 6 g C m−2 yr−1. Due to an earlier and warmer spring and sunnier autumn, the landscape was a stronger CO2 sink during the first year (−122 ± 8 g C m−2) compared to the second year (−52 ± 9 g C m−2). Footprint analysis shows that 87% of the CO2 flux measurements originated from forests, whereas mires, clear-cuts, lakes, and grassland contributed 11%, 1%, 0.7%, and 0.2%, respectively. Altogether, the CO2 sink strength of the heterogeneous landscape was up to 38% lower compared to the sink strength of a mature stand surrounding the tower. Overall, this study suggests that the managed boreal landscape acted as a CO2 sink and advocates tall tower eddy covariance measurements to improve regional carbon budget estimates.
  •  
24.
  • Cienciala, E, et al. (författare)
  • Canopy transpiration from a boreal forest in Sweden during a dry year
  • 1997
  • Ingår i: AGRICULTURAL AND FOREST METEOROLOGY. - : ELSEVIER SCIENCE BV. - 0168-1923. ; 86:3-4, s. 157-167
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Estimation of areal evapotranspiration is crucial for the parameterization of the soil-vegetation-atmosphere interface in climate models and for the assessment of land-use changes on water resources. Present knowledge on how areal forest evapotranspiratio
  •  
25.
  • De Pauw, Karen, et al. (författare)
  • Urban forest microclimates across temperate Europe are shaped by deep edge effects and forest structure
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 341
  • Tidskriftsartikel (refereegranskat)abstract
    • The urban heat island (UHI) causes strong warming of cities and their urban forests worldwide. Especially urban forest edges are strongly exposed to the UHI effect, which could impact urban forest biodiversity and functioning. However, it is not known to what extent the UHI effect alters edge-to-interior microclimatic gradients within urban forests and whether this depends on the forests' structure.Here we quantified gradients of air temperature, relative air humidity and vapour pressure deficits (VPD) along urban forest edge-to-interior transects with contrasting stand structures in six major cities across Europe. We performed continuous hourly microclimate measurements for two consecutive years and analysed the magnitude and depth of edge effects, as well as forest structural drivers of microclimatic variation.Compared to edge studies in rural temperate forests, we found that edge effects reached deeper into urban forests, at least up to 50 m. Throughout the year, urban forest edges were warmer and drier compared to forest interiors, with the largest differences occurring during summer and daytime. Not only maximum, but also mean and minimum temperatures were higher at the urban forest edge up to large edge distances (at least 85 m). Denser forests with a higher plant area index buffered high air temperatures and VPDs from spring to autumn.We conclude that urban forest edges are unique ecotones with specific microclimates shaped by the UHI effect. Both forest edges and interiors showed increased buffering capacities with higher forest canopy density. We advocate for the conservation and expansion of urban forests which can buffer increasingly frequent and intense climate extremes. To this end, urban forest managers are encouraged to aim for multi-layered dense forest canopies and consider edge buffer zones of at least 50 m wide.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 159
Typ av publikation
tidskriftsartikel (157)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (157)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Lindroth, Anders (19)
Peichl, Matthias (11)
Jönsson, Anna Maria (8)
Lindroth, A. (8)
Kljun, Natascha (8)
Jansson, Per-Erik. (8)
visa fler...
Grelle, A (8)
Montagnani, Leonardo (7)
Mölder, Meelis (7)
Chi, Jinshu (7)
Nilsson, Mats (6)
Zhang, Wenxin (6)
Lagergren, Fredrik (6)
Halldin, S (6)
Seibert, J (6)
Vico, Giulia (5)
Linder, Sune (5)
Vestin, Patrik (5)
Oren, Ram (5)
Laudon, Hjalmar (4)
Tagesson, Torbern (4)
De Frenne, Pieter (4)
Näsholm, Torgny (4)
Lundmark, Tomas (4)
Klemedtsson, Leif, 1 ... (4)
Marshall, John (4)
Zhao, Peng (4)
Hedwall, Per-Ola (4)
Cienciala, E (4)
Ottosson Löfvenius, ... (3)
Niklasson, Mats (3)
Diekmann, Martin (3)
Plue, Jan (3)
Verheyen, Kris (3)
Chen, Deliang, 1961 (3)
Papale, Dario (3)
Seibert, Jan (3)
Arneth, Almut (3)
Lenoir, Jonathan (3)
Samuelsson, Patrick (3)
Vangansbeke, Pieter (3)
Gottschalk, L (3)
Mammarella, Ivan (3)
Varlagin, Andrej (3)
Halldin, Sven (3)
Ibrom, Andreas (3)
Wu, Mousong (3)
Klosterhalfen, Anne (3)
Feigenwinter, Christ ... (3)
Lundin, Lars-Christe ... (3)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (58)
Lunds universitet (52)
Uppsala universitet (27)
Göteborgs universitet (16)
Stockholms universitet (13)
Kungliga Tekniska Högskolan (7)
visa fler...
Umeå universitet (4)
Linnéuniversitetet (3)
Luleå tekniska universitet (2)
Mittuniversitetet (2)
Linköpings universitet (1)
Jönköping University (1)
Chalmers tekniska högskola (1)
RISE (1)
visa färre...
Språk
Engelska (157)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (119)
Lantbruksvetenskap (62)
Teknik (3)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy