SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0363 6127 OR L773:1522 1466 OR L773:1931 857X "

Search: L773:0363 6127 OR L773:1522 1466 OR L773:1931 857X

  • Result 1-25 of 126
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Patinha, Daniela, et al. (author)
  • Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors
  • 2013
  • In: AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY. - : American Physiological Society. - 1931-857X .- 1522-1466 .- 0363-6127. ; 304:5, s. F614-F622
  • Journal article (peer-reviewed)abstract
    • Increased angiotensin II (ANG II) or adenosine can potentiate each other in the regulation of renal hemodynamics and tubular function. Diabetes is characterized by hyperfiltration, yet the roles of ANG II and adenosine receptors for controlling baseline renal blood flow (RBF) or tubular Na+ handling in diabetes is presently unknown. Accordingly, the changes in their functions were investigated in control and 2-wk streptozotocin-diabetic rats after intrarenal infusion of the ANG II AT(1) receptor antagonist candesartan, the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), or their combination. Compared with controls, the baseline blood pressure, RBF, and renal vascular resistance (RVR) were similar in diabetics, whereas the glomerular filtration rate (GFR) and filtration fraction (FF) were increased. Candesartan, DPCPX, or the combination increased RBF and decreased RVR similarly in all groups. In controls, the GFR was increased by DPCPX, but in diabetics, it was decreased by candesartan. The FF was decreased by candesartan and DPCPX, independently. DPCPX caused the most pronounced increase in fractional Na+ excretion in both controls and diabetics, whereas candesartan or the combination only affected fractional Li+ excretion in diabetics. These results suggest that RBF, via a unifying mechanism, and tubular function are under strict tonic control of both ANG II and adenosine in both control and diabetic kidneys. Furthermore, increased vascular AT(1) receptor activity is a contribution to diabetes-induced hyperfiltration independent of any effect of adenosine A(1) receptors.
  •  
2.
  • Andersson, Maria, 1976, et al. (author)
  • Mild renal ischemia-reperfusion reduces charge and size selectivity of the glomerular barrier
  • 2007
  • In: American Journal of Physiology Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1931-857X .- 1522-1466. ; 292:6
  • Journal article (peer-reviewed)abstract
    • Despite recent discoveries of molecules in podocytes, the mechanisms behind most conditions of proteinuria are still poorly understood. To understand more about this delicate barrier, we studied the functional and morphological effects of mild (15 min) renal ischemia-reperfusion injury (IRI). Renal function was studied in rats in vivo, followed by a more detailed analysis of the glomerular barrier in cooled (8 degrees C) isolated perfused kidneys (cIPK). Renal blood flow was quickly restored, whereas the glomerular filtration rate remained halved 30 min after IRI. Tubular cell activity was intact as judged from the unaffected Cr-EDTA U/P concentration ratio. In vivo, the fractional clearance (theta) for albumin increased 16 times. In rats subjected to cIPK starting 30 min after in vivo IRI, theta(albumin) was 15 times and theta(Ficoll_36angstroms) 1.8 times higher than in control cIPKs. According to the heterogeneous charged fiber model, IRI reduced the fiber charge density to 38% of control (P < 0.01, n = 7). Morphometric analysis with electron microscopy did not reveal any changes in the podocytes or the glomerular basement membrane (GBM) after IRI, suggesting more subtle changes of the GBM and/or the endothelial glycocalyx. We conclude that mild renal IRI induces formation of reactive oxygen species, massive proteinuria, and loss of charged fibers with no apparent change in morphology. These novel findings stress the importance of other components of the barrier, such as proteoglycans produced by the glomerular cells, and provide a tentative explanation for the mechanisms behind proteinuria in glomerulonephritis, for example.
  •  
3.
  • Asgeirsson, Daniel, et al. (author)
  • Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats.
  • 2006
  • In: American Journal of Physiology: Renal, Fluid and Electrolyte Physiology. - : American Physiological Society. - 0363-6127. ; 291:5, s. 1083-1089
  • Journal article (peer-reviewed)abstract
    • It is established that the glomerular filter sieves macromolecules based on their size, shape, and charge. Anionic proteins are thus retarded compared with their neutral or cationic counterparts. However, recent studies have indicated that charge effects are small, or even "anomalous," for polysaccharides. We therefore investigated the impact of charge on the glomerular permeability to polysaccharides by comparing sieving coefficients ({theta}; primary urine-to-plasma concentration ratio) for negatively charged, carboxymethylated (CM) FITC-Ficoll and FITC-dextran with their neutral counterparts. For these probes, {theta} were determined in anesthetized Wistar rats [269 ± 2.7 g (±SE; n = 36)], whose ureters were cannulated for urine sampling. The glomerular filtration rate was assessed using FITC-inulin. Polysaccharides were constantly infused, and after equilibration, urine was collected and a midpoint plasma sample was taken. Size and concentration determinations of the FITC-labeled polysaccharides were achieved by size-exclusion HPLC (HPSEC). For CM-Ficoll, {theta} was significantly increased (32 times at 55 Å) compared with that of uncharged Ficoll. A small increase in {theta} for CM-dextran compared with neutral dextran was also observed (1.8 times at 55 Å). In conclusion, negatively charged Ficoll relative to neutral Ficoll was found to be markedly hyperpermeable across the glomerular filter. Furthermore, negatively charged Ficoll was observed to be larger on HPSEC compared with its neutral counterpart of the same molecular weight. It is proposed that the introduction of negative charges in the "dendrimeric," cross-linked Ficoll molecule may alter its configuration, so as to make it more extended, and conceivably, more flexible, thereby increasing its glomerular permeability. charge barrier; capillary permeability; macromolecules; fractional clearance; reflection coefficients IT IS GENERALLY ACCEPTED THAT the glomerular filter discriminates among macromolecules based on their size, shape, and net charge (6, 8). With respect to charge, the permeability of anionic dextran sulfate was found to be reduced and that of cationic, diethylaminoethyl (DEAE) dextran to be increased compared with that of neutral dextran (6). However, more recent studies have indicated that sulfated dextran may be processed in the kidney (28) and desulfated during its renal passage (10), and furthermore, that it may bind to plasma proteins (17), and to membrane phospholipids (25), causing an artifactual reduction in the sieving coefficients ({theta}; i.e., the primary urine-to-plasma concentration ratios) of dextran sulfate. In addition, isolated glomerular basement membranes (GBM) have generally failed to show charge selectivity when probed with neutral and negatively charged Ficoll (7) or native (anionic) or cationized albumin (4). In line with these findings, Schaeffer et al. (26) were unable to find (in rats in vivo) any difference between glomerular {theta} to carboxymethylated (non-sulfated) dextran or to hydroxymethyl starch (HES), both negatively charged, and their neutral counterparts. Furthermore, the HES molecules showed lower {theta} for any given Stokes-Einstein (SE) radius (cf. Ficoll) than did dextran. It was concluded that the glomerular filtration barrier restricts the transport of polysaccharide macromolecules as a function of size and configuration whereas the presence or absence of negative charge does not play any role. Further supporting these results, Guimarães et al. (18) did not find a decrease in glomerular permeability to negatively charged, carboxymethylated (CM) Ficoll compared with uncharged Ficoll, confirming a previous observation by Greive et al. (16). Instead, they found a markedly increased glomerular permeability to CM-Ficoll. In contrast to the apparent inability of the glomerular filter to discriminate between polysaccharides of different charge, there is ample evidence that, indeed, the glomerular filter selects globular proteins based on their charge. Thus anionic proteins are retarded compared with neutral and cationic proteins, as extensively reviewed by Comper and Glasgow (9) and Venturoli and Rippe (29). The reason the glomerular capillary wall exhibits low discrimination ability with respect to differently charged polysaccharides, while being able to separate proteins of different molecular charge, is obscure. However, one clue to this enigma could be the fact that carbohydrates exhibit an extended molecular configuration, with a larger SE radius, compared with that for globular proteins, for any given molecular mass (19, 29). Such an extended configuration, conceivably, generates a more flexible (compressible) structure and hence increases the molecule's permeability through the glomerular filtration barrier (29). Charge modification of a polysaccharide may lead to a further increase in molecular extension, favoring an increased flexibility and, thereby, an increased solute permeability. Could the process of charge modification of the highly cross linked and "ellipsoid" molecules of Ficoll (19) lead to conformational alterations, with increased molecular extension, increasing their permeability compared with their uncharged counterparts? If so, would the linear, "random coil," structure of dextran make it less affected by conformational changes, and thereby less hyperpermeable, when negatively charged? The present study was performed to test this hypothesis by comparing glomerular sieving coefficients to negatively charged, CM-Ficoll and -dextran vs. their uncharged molecular equivalents.
  •  
4.
  • Axelsson, Josefin, et al. (author)
  • Effects of early endotoxemia and dextran-induced anaphylaxis on the size-selectivity of the glomerular filtration barrier in rats.
  • 2009
  • In: American Journal of Physiology: Renal, Fluid and Electrolyte Physiology. - : American Physiological Society. - 0363-6127. ; 296:2, s. 242-248
  • Journal article (peer-reviewed)abstract
    • This study was performed to investigate the glomerular permeability alterations responsible for the microalbuminuria occurring in endotoxemia and during anaphylactic shock. In anaesthetized Wistar rats, the left ureter was catheterized for urine collection, while simultaneously, blood access was achieved. Endotoxemia was induced by Lipopolysaccharide (LPS) from E. Coli, and glomerular permeability assessed at 60, 90 (ENDO-(60)/90; n=7) and 120 min (ENDO-120; n=7). Anaphylaxis was induced by a bolus dose of Dextran-70, and glomerular permeability assessed at 5 min (ANA-5; n=8) and 40 min (ANA-40; n=9). Sham animals, were followed for either 5 or 120 min. The glomerular sieving coefficients () to FITC-Ficoll (70/400) were determined from plasma and urine samples and assessed using size-exclusion chromatography (HPLC). 2 h after start of the LPS infusion, but not at 60 or 90 min, for Ficoll70A had increased markedly (from 2.91 x 10(-5) +/- 6.33 x 10(-6) to 7.78 x 10(-5) +/- 6.21 x 10(-6) (P<0.001)). In anaphylaxis there was a large increase in for Ficolls >60 A in mol. radius already at 5 min, but the glomerular permeability was completely restored at 40 min. In conclusion, there was a transient, immediate increment of glomerular permeability in dextran-induced anaphylaxis, which was completely reversible within 40 min. By contrast, endotoxemia caused an increase in glomerular permeability that was manifest first after 2 h. In both cases to large Ficoll molecules were markedly increased, reflecting an increase in the number of large pores in the glomerular filter. Key words: capillary permeability, Ficoll, sieving coefficient, albumin.
  •  
5.
  • Axelsson, Josefin, et al. (author)
  • Loss of size-selectivity of the glomerular filtration barrier in rats following laparotomy and muscle trauma.
  • 2009
  • In: American Journal of Physiology: Renal, Fluid and Electrolyte Physiology. - : American Physiological Society. - 0363-6127. ; 297, s. 577-582
  • Journal article (peer-reviewed)abstract
    • Post-traumatic microalbuminuria may be caused by either charge- or size-selective alterations in the glomerular filtration barrier, or both, and/or to a reduction in proximal tubular protein reabsorption (PTR). This study was performed to elucidate the pathophysiology of the increases in glomerular permeability occurring in rats exposed to laparotomy or to laparotomy and muscle trauma. In anaesthetized Wistar rats (250-280 g), the left ureter was catheterized for urine collection, while simultaneously blood access was achieved. Rats were exposed to trauma by laparotomy (L) (n=8), or by a combination of L and muscle trauma (MT), induced by topical blunt injury of the abdominal muscles bilaterally. After L muscles were crushed using a hemostatic forceps at either 2x2 sites ("small" MT; n=9), or at 2x5 sites ("large" MT; n=9). Sham groups (n=16), not exposed to laparotomy, were used as controls. The glomerular sieving coefficients () to polydisperse, fluorescein isothiocyanate (FITC)-Ficoll-70/400 (mol.radius 13-80A) were determined at 5 or 60 min after L and (L + MT), respectively, from plasma and urine samples, and analyzed by high performance size-exclusion chromatography (HPSEC). A tissue uptake technique was used to assess for (125)I-serum albumin. L, with or without MT, increased for Ficoll55-80A and albumin rapidly and markedly. -Ficoll70A thus increased approximately threefold, and for albumin significantly, for all trauma groups. According to the "two-pore model" of glomerular permeability these changes reflect an increase in the number of large pores in the glomerular filter without any primary changes in the charge-selective properties of the filter. Key words: microalbuminuria, glomerular sieving coefficients, albumin, Ficoll.
  •  
6.
  • Brown, Russell D., et al. (author)
  • Tubuloglomerular feedback response in the prenatal and postnatal ovine kidney
  • 2011
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 300:6, s. F1368-F1374
  • Journal article (peer-reviewed)abstract
    • Brown RD, Turner AJ, Carlstrom M, Persson AE, Gibson KJ. Tubuloglomerular feedback response in the prenatal and postnatal ovine kidney. Am J Physiol Renal Physiol 300: F1368-F1374, 2011. First published March 30, 2011; doi:10.1152/ajprenal. 00019.2011.-The tubuloglomerular feedback mechanism (TGF) plays an important role in regulating single-nephron glomerular filtration rate (GFR) by coupling distal tubular flow to arteriolar tone. It is not known whether TGF is active in the developing kidney or whether it can regulate renal vascular tone and thus GFR during intrauterine life. TGF characteristics were examined in late-gestation ovine fetuses and lambs under normovolemic and volume-expanded (VE) conditions. Lambs and pregnant ewes were anesthetized and the fetuses were delivered via a caesarean incision into a heated water bath, with the umbilical cord intact. Under normovolemic conditions, mean arterial pressure of the fetuses was lower than lambs (51 +/- 1 vs. 64 +/- 3 mmHg). The maximum TGF response (Delta P(SFmax)) was found to be lower in fetuses than lambs when tubular perfusion was increased from 0 to 40 nl/min (5.4 +/- 0.7 vs. 10.6 +/- 0.4 mmHg). Furthermore, the flow rate eliciting half-maximal response [turning point (TP)] was 15.7 +/- 0.9 nl/min in fetuses compared with 19.3 +/- 1.0 nl/min in lambs, indicating a greater TGF sensitivity of the prenatal kidney. VE decreased Delta P(SFmax) (4.2 +/- 0.4 mmHg) and increased TP to 23.7 +/- 1.3 nl/min in lambs. In fetuses, VE increased stop-flow pressure from 26.6 +/- 1.5 to 30.3 +/- 0.8 mmHg, and reset TGF sensitivity so that TP increased to 21.3 +/- 0.7 nl/min, but it had no effect on Delta P(SFmax). This study provides direct evidence that the TGF mechanism is active during fetal life and responds to physiological stimuli. Moreover, reductions in TGF sensitivity may contribute to the increase in GFR at birth.
  •  
7.
  • Carlström, Mattias, et al. (author)
  • Role of nitric oxide deficiency in the development of hypertension in hydronephrotic animals
  • 2008
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 294:2, s. 362-370
  • Journal article (peer-reviewed)abstract
    • Hydronephrotic animals develop renal injury and hypertension, which is associated with an abnormal tubuloglomerular feedback (TGF). The TGF sensitivity is coupled to nitric oxide (NO) in the macula densa. The involvement of reduced NO availability in the development of hypertension in hydronephrosis was investigated. Hydronephrosis was induced by ureteral obstruction in young rats. Blood pressure and renal excretion were measured in adulthood, under different sodium conditions, and before and after chronic administration of either N-G- nitro-L-arginine methyl ester (L-NAME) or L-arginine. Blood samples for ADMA, SDMA, and L-arginine analysis were taken and the renal tissue was used for histology and determination of NO synthase (NOS) proteins. TGF characteristics were determined by stop-flow pressure technique before and after administration of 7-nitroindazole (7-NI) or L-arginine. Hydronephrotic animals developed salt-sensitive hypertension, which was associated with pressure natriuresis and diuresis. The blood pressure response to L-NAME was attenuated and L-arginine supplementation decreased blood pressure in hydronephrotic animals, but not in the controls. Under control conditions, reactivity and sensitivity of the TGF response were greater in the hydronephrotic group. 7-NI administration increased TGF reactivity and sensitivity in control animals, whereas, in hydronephrotic animals, neuronal NOS (nNOS) inhibition had no effect. L-Arginine attenuated TGF response more in hydronephrotic kidneys than in controls. The hydronephrotic animals displayed various degrees of histopathological changes. ADMA and SDMA levels were higher and the renal expressions of nNOS and endothelial NOS proteins were lower in animals with hydronephrosis. Reduced NO availability in the diseased kidney in hydronephrosis, and subsequent resetting of the TGF mechanism, plays an important role in the development of hypertension.
  •  
8.
  • Ding, Mei, et al. (author)
  • Regulation of hypoxia-inducible factor 2-a is essential for integrity of the glomerular barrier
  • 2013
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 304:1, s. F120-F126
  • Journal article (peer-reviewed)abstract
    • Deletion of the von Hippel-Lindau tumor suppressor (Vhl) gene from renal podocytes of mice (podVhl KO) leads to rapidly progressive glomerulonephritis (RPGN), a clinical syndrome characterized by rapid loss of renal function and crescents on renal biopsy. Genomic profiling of glomeruli isolated from podVhl knockout (KO) mice and from patients with RPGN identified a fingerprint of genes regulated by hypoxia-inducible factors (HIF), important substrates of the product of the VHL gene. Here, we show that stabilization of Hifs in podocytes is both required and sufficient for the glomerular phenotype observed in podVhl KO mice. Genetic deletion of the obligate dimerization partner Arnt/Hif1b that is essential for Hif transcriptional function rescues the phenotype. Conversely, stabilization of HIF2A alone in podocytes results in crescentic glomerular disease. Together, our results show that the Hif pathway and Hif2a in particular are key players in maintenance of the glomerular barrier.
  •  
9.
  • Dolinina, Julia, et al. (author)
  • Nitric oxide synthase inhibition causes acute increases in glomerular permeability in vivo, dependent upon reactive oxygen species
  • 2016
  • In: American Journal of Physiology: Renal, Fluid and Electrolyte Physiology. - : American Physiological Society. - 0363-6127. ; 311:5, s. 984-990
  • Journal article (peer-reviewed)abstract
    • There is increasing evidence that the permeability of the glomerular filtration barrier (GFB) is partly regulated by a balance between the bioavailability of nitric oxide (NO) and that of reactive oxygen species (ROS). It has been postulated that normal or moderately elevated NO levels protect the GFB from permeability increases, whereas ROS, through reducing the bioavailability of NO, have the opposite effect. We tested the tentative antagonism between NO and ROS on glomerular permeability in anaesthetized Wistar rats, in which the left ureter was cannulated for urine collection while simultaneously blood access was achieved. Rats were systemically infused with eitherL-NAME orL-NAME together with the superoxide scavenger Tempol, or together withL-arginine or the NO-donor DEA-NONOate, or the cGMP agonist 8-bromo-cGMP. To measure glomerular sieving coefficients (theta, θ) to Ficoll, rats were infused with FITC-Ficoll 70/400 (mol/radius 10-80 Å). Plasma and urine samples were analyzed by high-performance size-exclusion chromatography (HPSEC) for determination of θ for Ficoll repeatedly during up to 2 h.L-NAME increased θ for Ficoll70Å from 2.27 ± 1.30 ˟ 10-5 to 8.46 ± 2.06 ˟ 10-5 (n = 6, P < 0.001) in 15 min. Tempol abrogated these increases in glomerular permeability and an inhibition was also observed withL-arginine and with 8-bromo-cGMP. In conclusion, acute NO synthase inhibition in vivo byL-NAME caused rapid increases in glomerular permeability, which could be reversed by either an ROS antagonist or by activating the guanylyl cyclase-cGMP pathway. The data strongly suggest a protective effect of NO in maintaining normal glomerular permeability in vivo.
  •  
10.
  • Granqvist, Anna, et al. (author)
  • Podocyte proteoglycan synthesis is involved in the development of nephrotic syndrome
  • 2006
  • In: Am J Physiol Renal Physiol. - : American Physiological Society. - 0363-6127 .- 1931-857X .- 1522-1466. ; 291
  • Journal article (peer-reviewed)abstract
    • Proteoglycans (PG) are important for the glomerular barrier, for cell signaling and for the anchorage of cells to the glomerular basement membrane. They are, however, complex macromolecules, and their production has not yet been thoroughly investigated for podocytes. In the present study, we have studied the biosynthesis of proteoglycans by highly differentiated human podocytes and in rats. The cells were treated with puromycin aminonucleoside (PAN, a nephrosis inducing agent), steroids (used as primary treatment for nephrotic syndrome) or both. Analysis was made by Taqman(R)real-time PCR, Western blot and by metabolic labeling with (35)S and (3)H. We found that podocytes produce versican, syndecan-1, decorin and biglycan together with the previously known PGs syndecan-4, glypican and perlecan. PAN treatment down-regulated the mRNA and the protein expression of both versican (by 24+/-6%, p<0.01, for mRNA and by 50% for protein) and perlecan (by 14+/-5%, p<0.05, for mRNA and by 50% for protein). The decreased expression was confirmed by studying the glomerular gene expression in rats treated with PAN during a time course study. In addition, puromycin decreased the expression of enzymes involved in the glycosaminoglycan (GAG) biosynthesis. Steroid treatment decreased perlecan (by 24+/-3%, p<0.01) and syndecan-1 expression (by 30+/-4%, p<0.01), but increased the expression of decorin 2.5-fold. The observed alterations of proteoglycan synthesis induced by PAN may lead to decreased glomerular anionic charge and disturbed podocyte morphology, factors that are important for the development of a nephrotic syndrome.
  •  
11.
  • Granqvist, Anna, et al. (author)
  • Primary human glomerular endothelial cells produce proteoglycans, and puromycin affects their posttranslational modification
  • 2005
  • In: Am J Physiol Renal Physiol. - : American Physiological Society. - 0363-6127 .- 1931-857X .- 1522-1466. ; 288:4
  • Journal article (peer-reviewed)abstract
    • This article describes the possible role of the endothelial cell-surface coat, containing proteoglycans (PGs) with connected glycosaminoglycans (GAGs), in maintaining glomerular permselectivity. Primary human glomerular endothelial cells (HGEC) in culture were treated with the nephrosis-inducing agent puromycin aminonucleoside (PAN). Analysis was made by TaqMan real-time PCR, Western blot analysis, and by metabolic labeling with [(35)S]sulfate. The HGECs express several PGs: syndecan, versican, glypican, perlecan, decorin, and biglycan, which may contribute to the glomerular charge barrier. PAN treatment downregulated both the protein expression (by 25%) and the mRNA expression (by 37 +/- 6%, P < 0.001, n = 8) of versican compared with control. Transferases important for chondroitin and heparan sulfate biosynthesis were also significantly downregulated by PAN, resulting in less sulfate groups, shorter GAG chains, and reduced PG net-negative charge. Moreover, analysis of the cell media after PAN treatment revealed a reduced content of [(35)S]sulfate-labeled PGs (40% of control). We conclude that PAN may cause proteinuria by affecting the endothelial cell-surface layer and not only by disrupting the foot process arrangement of the podocytes. Thus the endothelium may be a more important component of the glomerular barrier than hitherto acknowledged.
  •  
12.
  • Grände, Gustaf, et al. (author)
  • Unaltered Size-selectivity of the Glomerular Filtration Barrier in Caveolin-1 Knock-out (KO) mice.
  • 2009
  • In: American Journal of Physiology: Renal, Fluid and Electrolyte Physiology. - : American Physiological Society. - 0363-6127. ; 297:2, s. 257-262
  • Journal article (peer-reviewed)abstract
    • The transfer of albumin from blood to tissue has been found to be increased in caveolin-1 knock-out (KO) mice. This has been considered to reflect an increased microvascular permeability, conceivably caused by an increased endothelial production of nitric oxide (NO) in mice lacking caveolin-1. To investigate whether such an increase in endothelial NO-production would also affect the glomerular barrier characteristics, the glomerular sieving coefficients () to neutral, polydisperse fluorescein isothiocyanate (FITC)-Ficoll 70/400 (mol. radius 15-90 A) were determined in caveolin-1 KO mice vs. their wild-type counterparts. for Ficoll were assessed using high performance size exclusion chromatography (HPSEC) on blood and urine samples. Furthermore, the transcapillary escape rate (TER) of (125)I-labeled albumin and plasma volume (PV) were determined in both types of mice. Despite an increase in the glomerular filtration rate (GFR) in caveolin-1 KO mice (0.23+/-0.04 mL/min; n=7 vs. 0.10+/-0.02 mL/min; n=7; p<0.05) the glomerular Ficoll sieving curves were nearly identical. Furthermore, caveolin-1 KO mice showed an increased PV (6.59+/-0.42 mL/100g vs. 5.18+/-0.13 mL/100g; p<0.01) but only a tendency of an increased TER (14.69+/-1.59 %/h vs. 11.62+/-1.62 %/h; N.S.). It is concluded that in caveolin-1 KO mice the glomerular permeability was not increased, despite the presence of glomerular hyperfiltration. The present data are in line with the concept that the increased transvascular albumin leakage previously found in mice lacking caveolin-1 may be due to an elevation in systemic microvascular pressure following NO-induced precapillary vasodilatation, rather than being a consequence of an increased microvascular permeability per se. Key words: capillary permeability, nitric oxide, sieving coefficient, Ficoll, glomerular filtration rate.
  •  
13.
  • Helle, Frank, et al. (author)
  • Angiotensin II-induced contraction is attenuated by nitric oxide in afferent arterioles from the nonclipped kidney in 2K1C
  • 2009
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 296:1, s. F78-F86
  • Journal article (peer-reviewed)abstract
    • Two-kidney, one-clip (2K1C) is a model of renovascular hypertension where we previously found an exaggerated intracellular calcium (Ca(i)(2+)) response to ANG II in isolated afferent arterioles (AAs) from the clipped kidney (Helle F, Vagnes OB, Iversen BM. Am J Physiol Renal Physiol 291: F140-F147, 2006). To test whether nitric oxide (NO) ameliorates the exaggerated ANG II response in 2K1C, we studied ANG II (10(-7) mol/l)-induced calcium signaling and contractility with or without the NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME). In AAs from the nonclipped kidney, l-NAME increased the ANG II-induced Ca(i)(2+) response from 0.28 +/- 0.05 to 0.55 +/- 0.09 (fura 2, 340 nm/380 nm ratio) and increased contraction from 80 +/- 6 to 60 +/- 6% of baseline (P < 0.05). In vessels from sham and clipped kidneys, l-NAME had no effect. In diaminofluorescein-FM diacetate-loaded AAs from the nonclipped kidney, ANG II increased NO-derived fluorescence to 145 +/- 34% of baseline (P < 0.05 vs. sham), but not in vessels from the sham or clipped kidney. Endothelial NOS (eNOS) mRNA and ser-1177 phosphorylation were unchanged in both kidneys from 2K1C, while eNOS protein was reduced in the clipped kidney compared with sham. Cationic amino acid transferase-1 and 2 mRNAs were increased in 2K1C, indicating increased availability of l-arginine for NO synthesis, but counteracted by decreased scavenging of the eNOS inhibitor asymmetric dimethylarginine by dimethylarginine dimethylaminohydrolase 2. In conclusion, the Ca(i)(2+) and contractile responses to ANG II are blunted by NO release in the nonclipped kidney. This may protect the nonclipped kidney from the hypertension and elevated ANG II levels in 2K1C.
  •  
14.
  • Helle, Frank, et al. (author)
  • Nitric oxide in afferent arterioles after uninephrectomy depends on extracellular L-arginine
  • 2013
  • In: AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY. - : American Physiological Society. - 1931-857X .- 1522-1466 .- 0363-6127. ; 304:8, s. F1088-F1098
  • Journal article (peer-reviewed)abstract
    • Helle F, Skogstrand T, Schwartz IF, Schwartz D, Iversen BM, Palm F, Hultstrom M. Nitric oxide in afferent arterioles after uninephrectomy depends on extracellular L-arginine. Am J Physiol Renal Physiol 304: F1088-F1098, 2013. First published February 13, 2013; doi: 10.1152/ajprenal.00665.2011.-Uninephrectomy (UNX) causes hyperperfusion of the contralateral remaining kidney via increased nitric oxide (NO) synthesis. Although the exact mechanism remains largely unknown, we hypothesize that this would be localized to the afferent arteriole and that it depends on cellular uptake of L-arginine. The experiments were performed in rats 2 days (early) or 6 wk (late) after UNX and compared with controls (Sham) to study acute and chronic effects on NO metabolism. Renal blood flow was increased after UNX (21 +/- 2 ml.min(-1).kg(-1) in sham, 30 +/- 3 in early, and 26 +/- 1 in late, P andlt; 0.05). NO inhibition with N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) caused a greater increase in renal vascular resistance in early UNX compared with Sham and late UNX (138 +/- 24 vs. 88 +/- 10, and 84 +/- 7%, P andlt; 0.01). The lower limit of autoregulation was increased both in early and late UNX compared with Sham (P andlt; 0.05). L-NAME did not affect the ANG II-induced contraction of isolated afferent arterioles (AA) from Sham. AA from early UNX displayed a more pronounced contraction in response to L-NAME (-57 +/- 7 vs. -16 +/- 7%, P andlt; 0.05) and in the absence of L-arginine (-41 +/- 4%, P andlt; 0.05) compared with both late UNX and Sham. mRNA expression of endothelial NO synthase was reduced, whereas protein expression was unchanged. Cationic amino acid transporter-1 and -2 mRNA was increased, while protein was unaffected in isolated preglomerular resistance vessels. In conclusion, NO-dependent hyperperfusion of the remaining kidney in early UNX is associated with increased NO release from the afferent arteriole, which is highly dependent on extracellular L-arginine availability.
  •  
15.
  • Hultström, Michael, et al. (author)
  • AT(1) receptor activation regulates the mRNA expression of CAT1, CAT2, arginase-1, and DDAH2 in preglomerular vessels from angiotensin II hypertensive rats.
  • 2009
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 297:1, s. F163-8
  • Journal article (peer-reviewed)abstract
    • Previously, we found increased expression of l-arginine metabolizing enzymes in both kidneys from two-kidney, one-clip (2K1C) hypertensive rats (Helle F, Hultstrom M, Skogstrand T, Palm F, Iversen BM. Am J Physiol Renal Physiol 296: F78-F86, 2009). In the present study, we investigate whether AT(1) receptor activation can induce the changes observed in 2K1C. Four groups of rats were infused with 80 ng/min ANG II or saline for 14 days and/or given 60 mg x kg(-1) x day(-1) losartan. Gene expression was studied in isolated preglomerular vessels by RT-PCR. Dose-responses to ANG II were studied in isolated preglomerular vessels with and without acute NOS inhibition [10(-4) mol/l N(G)-nitro-l-arginine methyl ester (l-NAME)]. Expressions of endothelial nitric oxide synthase (eNOS), caveolin-1, and arginase-2 were not changed by ANG II infusion. CAT1 (0.3 8 +/- 0.07 to 0.73 +/- 0.12, P < 0.05), CAT2 (1.14 +/- 0.29 to 2.74 +/- 0.48), DDAH2 (1.09 +/- 0.27 to 2.3 +/- 0.46), and arginase-1 (1.08 +/- 0.17 to 1.82 +/- 0.22) were increased in ANG II-infused rats. This was prevented by losartan treatment, which reduced the expression of eNOS (0.97 +/- 0.26 to 0.37 +/- 0.11 in controls; 0.8 +/- 0.16 to 0.36 +/- 0.1 in ANG II-infused rats) and caveolin-1 (2.49 +/- 0.59 to 0.82 +/- 0.24 in controls and 2.59 +/- 0.61 to 1.1 +/- 0.25 in ANG II-infused rats). ANG II (10(-10) mol/l) caused vessels from ANG II-infused animals to contract to 53 +/- 15% of baseline diameter and 90 +/- 5% of baseline diameter in controls (P < 0.05) and was further enhanced by l-NAME to 4 +/- 4% of baseline diameter (P < 0.05). In vivo losartan treatment reduced the reactivity of isolated vessels to 91 +/- 2% of baseline in response to 10(-7) mol/l ANG II compared with 82 +/- 3% in controls (P < 0.05) and prevented the increased responsiveness caused by ANG II infusion. In conclusion, CAT1, CAT2, DDAH2, and arginase-1 expression in renal resistance vessels is regulated through the AT(1) receptor. This finding may be of direct importance for NOS and the regulation of preglomerular vascular function.
  •  
16.
  • Jeansson, Marie, 1971, et al. (author)
  • Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier
  • 2006
  • In: Am J Physiol Renal Physiol. - : American Physiological Society. - 0363-6127 .- 1931-857X .- 1522-1466. ; 290:1
  • Journal article (peer-reviewed)abstract
    • In this study, we pursued the somewhat controversial issue whether the glycosaminoglycans (GAG) in the endothelial cell glycocalyx are important for glomerular size and charge selectivity. In isoflurane-anesthetized mice, Intralipid droplets were used as indirect markers of the glomerular endothelial cell-surface layer, i.e., the glycocalyx. The mice were given intravenous injections of GAG-degrading enzymes, which due to their high molecular weight remained and acted intravascularly. Flow-arrested kidneys were fixed and prepared for electron microscopy, and the distance between glomerular endothelial cells and the luminal Intralipid droplets was measured. The relative frequency of Intralipid droplets was calculated for each 50-nm increment zone up to 500 nm from the endothelial cell membrane surface as were the mean distances. Glomerular size and charge selectivity were estimated from the clearance data for neutral Ficolls (molecular radii of 12-72 A), and albumin in isolated kidneys was perfused at 8 degrees C. In enzyme-treated animals (hyaluronidase, heparinase, and chondroitinase), the relative Intralipid droplet frequency in the zone closest to the endothelial cells, i.e., 0-50 nm, was increased approximately 2.5 times compared with controls. Also, the mean distance between the Intralipid droplets and the endothelium was decreased from 176 to 115-122 nm by enzyme treatment. These changes were accompanied by an increase in the fractional clearance for albumin. In conclusion, both morphological and functional measurements suggest the endothelial cell glycocalyx to be an important component of the glomerular barrier.
  •  
17.
  • Lai, En Yin, et al. (author)
  • Effects of the antioxidant drug tempol on renal oxygenation in mice with reduced renal mass
  • 2012
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 303:1, s. F64-74
  • Journal article (peer-reviewed)abstract
    • We tested the hypothesis that reactive oxygen species (ROS) contributed to renal hypoxia in C57BL/6 mice with ⅚ surgical reduction of renal mass (RRM). ROS can activate the mitochondrial uncoupling protein 2 (UCP-2) and increase O(2) usage. However, UCP-2 can be inactivated by glutathionylation. Mice were fed normal (NS)- or high-salt (HS) diets, and HS mice received the antioxidant drug tempol or vehicle for 3 mo. Since salt intake did not affect the tubular Na(+) transport per O(2) consumed (T(Na/)Q(O2)), further studies were confined to HS mice. RRM mice had increased excretion of 8-isoprostane F(2α) and H(2)O(2), renal expression of UCP-2 and renal O(2) extraction, and reduced T(Na/)Q(O2) (sham: 20 ± 2 vs. RRM: 10 ± 1 μmol/μmol; P < 0.05) and cortical Po(2) (sham: 43 ± 2, RRM: 29 ± 2 mmHg; P < 0.02). Tempol normalized all these parameters while further increasing compensatory renal growth and glomerular volume. RRM mice had preserved blood pressure, glomeruli, and patchy tubulointerstitial fibrosis. The patterns of protein expression in the renal cortex suggested that RRM kidneys had increased ROS from upregulated p22(phox), NOX-2, and -4 and that ROS-dependent increases in UCP-2 led to hypoxia that activated transforming growth factor-β whereas erythroid-related factor 2 (Nrf-2), glutathione peroxidase-1, and glutathione-S-transferase mu-1 were upregulated independently of ROS. We conclude that RRM activated distinct processes: a ROS-dependent activation of UCP-2 leading to inefficient renal O(2) usage and cortical hypoxia that was offset by Nrf-2-dependent glutathionylation. Thus hypoxia in RRM may be the outcome of NADPH oxidase-initiated ROS generation, leading to mitochondrial uncoupling counteracted by defense pathways coordinated by Nrf-2.
  •  
18.
  • Lasaitiene, Daina, 1970, et al. (author)
  • Neonatal RAS inhibition changes the phenotype of the developing thick ascending limb of Henle
  • 2004
  • In: Am J Physiol Renal Physiol. - : American Physiological Society. - 0363-6127 .- 1931-857X .- 1522-1466. ; 286:6
  • Journal article (peer-reviewed)abstract
    • Pharmacological interruption of angiotensin II type 1 (AT(1)) receptor signaling during nephrogenesis in rats perturbs renal tubular development. Perturbed tubulogenesis may contribute to long-term impairment of urinary concentrating ability, which is the main functional irreversible defect. The aim of this study was to further characterize tubular developmental deficits in neonatal rats, focusing on the thick ascending limb of Henle (TALH), known to undergo profound developmental changes and to be involved in urine-concentrating mechanisms. We have carried out immunohistochemistry and Western immunoblotting using antibodies directed against the major histocompatibility complex class II (MHC II) molecule and different TALH-specific markers, namely, cyclooxygenase-2 (COX-2), Tamm-Horsfall glycoprotein (THP), and the bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (BSC-1/NKCC2). Immunohistochemistry demonstrated expression of MHC II, COX-2, THP, and BSC-1/NKCC2 proteins in normally developing TALH cells. The AT(1)-receptor antagonist losartan abolished MHC II expression exclusively in the developing TALH cells. Increased expression of COX-2 and THP was observed in the TALH cells of losartan-treated rats. Western immunoblotting confirmed increases in cortical and medullary COX-2 and THP abundance and revealed a decrease in cortical BSC-1/NKCC2 abundance in response to losartan treatment. We conclude that neonatal losartan treatment causes significant changes in the phenotype of the developing TALH in the rat.
  •  
19.
  • Lasaitiene, Daina, 1970, et al. (author)
  • Tubular mitochondrial alterations in neonatal rats subjected to RAS inhibition.
  • 2006
  • In: American journal of physiology. Renal physiology. - : American Physiological Society. - 0363-6127 .- 1931-857X .- 1522-1466. ; 290:5
  • Journal article (peer-reviewed)abstract
    • Pharmacological interruption of the angiotensin II (ANG II) type 1 receptor signaling during nephrogenesis in rats perturbs renal tubular development. This study aimed to further investigate tubular developmental defects in neonatal rats subjected to ANG II inhibition with enalapril. We evaluated tubular ultrastructural changes using electron microscopy and estimated spectrophotometrically activity or concentrations of succinate dehydrogenase (SDH), cytochromes a and c, which are components of mitochondrial respiratory chain, on postnatal days 2 and 9 (PD2 and PD9). Renal expression of sodium-potassium adenosinetriphosphatase (Na(+)-K(+)-ATPase) and two reflectors of mitochondrial biogenesis [mitochondrial transcription factor A (TFAM) and translocase of outer mitochondrial membrane 20 (TOM20)] also were studied using Western immunoblotting and immunohistochemistry. Enalapril disrupted inner mitochondrial membranes of developing cortical and medullary tubular cells on PD2 and PD9. These findings were paralleled by impaired mitochondrial respiratory function, as revealed from the changes in components of the mitochondrial respiratory chain, such as decreased cytochrome c level in the cortex and medulla on PD2 and PD9, decreased cytochrome a level in the cortex and medulla on PD2, and diminished cortical SDH activity on PD2 and PD9. Moreover, tubular expression of the most active energy-consuming pump Na(+)-K(+)-ATPase was decreased by enalapril treatment. Renal expression of TFAM and TOM20 was not altered by neonatal enalapril treatment. Because nephrogenesis is a highly energy-demanding biological process, with the energy being utilized for renal growth and transport activities, the structural-functional alterations of the mitochondria induced by neonatal enalapril treatment may provide the propensity for the tubular developmental defect.
  •  
20.
  • Laustsen, Christoffer, et al. (author)
  • Antioxidant treatment attenuates lactate production in diabetic nephropathy
  • 2017
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 312:1, s. F192-F199
  • Journal article (peer-reviewed)abstract
    • The early progression of diabetic nephropathy is notoriously difficult to detect and quantify before the occurrence of substantial histological damage. Recently, hyperpolarized [1-(13)C]pyruvate has demonstrated increased lactate production in the kidney early after the onset of diabetes, implying increased lactate dehydrogenase activity as a consequence of increased nicotinamide adenine dinucleotide substrate availability due to upregulation of the polyol pathway, i.e., pseudohypoxia. In this study, we investigated the role of oxidative stress in mediating these metabolic alterations using state-of-the-art hyperpolarized magnetic resonance (MR) imaging. Ten-week-old female Wistar rats were randomly divided into three groups: healthy controls, untreated diabetic (streptozotocin treatment to induce insulinopenic diabetes), and diabetic, receiving chronic antioxidant treatment with TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) via the drinking water. Examinations were performed 2, 3, and 4 wk after the induction of diabetes by using a 3T Clinical MR system equipped with a dual tuned (13)C/(1)H-volume rat coil. The rats received intravenous hyperpolarized [1-(13)C]pyruvate and were imaged using a slice-selective (13)C-IDEAL spiral sequence. Untreated diabetic rats showed increased renal lactate production compared with that shown by the controls. However, chronic TEMPOL treatment significantly attenuated diabetes-induced lactate production. No significant effects of diabetes or TEMPOL were observed on [(13)C]alanine levels, indicating an intact glucose-alanine cycle, or [(13)C]bicarbonate, indicating normal flux through the Krebs cycle. In conclusion, this study demonstrates that diabetes-induced pseudohypoxia, as indicated by an increased lactate-to-pyruvate ratio, is significantly attenuated by antioxidant treatment. This demonstrates a pivotal role of oxidative stress in renal metabolic alterations occurring in early diabetes.
  •  
21.
  • Li, Shenyang, et al. (author)
  • Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury
  • 2012
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 303:3, s. F437-F448
  • Journal article (peer-reviewed)abstract
    • Peroxisome proliferator-activated receptor-alpha (PPAR alpha) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPAR alpha and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity. CP also reduced kidney LPL expression and activity. Angptl4 mRNA levels were increased by ninefold in liver and kidney tissue and by twofold in adipose tissue of CP-treated mice. Western blots of two-dimensional gel electrophoresis identified increased expression of a neutral pI Angptl4 protein in kidney tissue of CP-treated mice. Immunolocalization studies showed reduced staining of LPL and increased staining of Angptl4 primarily in proximal tubules of CP-treated mice. CP also increased TG accumulation in kidney tissue, which was ameliorated by PPAR alpha ligand. In summary, a PPAR alpha ligand ameliorates CP-mediated nephrotoxicity by increasing LPL activity via increased expression of GPHBP1 and Lmf1 and by reducing expression of Angptl4 protein in the proximal tubule.
  •  
22.
  • Lund, Ulla, et al. (author)
  • Glomerular filtration rate dependence of sieving of albumin and some neutral proteins in rat kidneys
  • 2003
  • In: American Journal of Physiology: Renal, Fluid and Electrolyte Physiology. - : American Physiological Society. - 0363-6127. ; 284:6, s. 1226-1234
  • Journal article (peer-reviewed)abstract
    • The size and charge-selective properties of the glomerular barrier are partly controversial. Glomerular sieving coefficients (theta) for proteins have rarely been determined noninvasively before in vivo. Therefore, theta was assessed vs. glomerular filtration rate (GFR; Cr-51-EDTA clearance) in intact rats for radiolabeled myoglobin, kappa-dimer, neutral horseradish peroxidase (nHRP), neutral human serum albumin (nHSA), and native albumin (HSA). To obtain theta, glomerular tracer clearance, assessed from the 7- to 8-min kidney uptake of protein, was divided by the GFR. The data were fitted with a two-pore model of glomerular permeability, where the small-pore radius was 37.35 +/- 1.11(SE) Angstrom, and the "unrestricted pore area over diffusion path length" (A(0)/DeltaX) 1.84 +/- 0.43 . 10(6) cm. Although seemingly horizontal for nHRP and nHSA, the log theta vs. GFR curves showed slightly negative slopes for the proteins investigated in the GFR interval of 2-4.5 ml/min. Strong negative ( linear) correlations between ( log) theta and GFR were obtained for myoglobin (P = 0.002) and HSA (P = 0.006), whereas they were relatively weak for nHRP and nHSA and nonsignificant for kappa-dimer. theta for nHSA was markedly higher than that for HSA. In conclusion, there were no indications of increases in theta vs. GFR, as indicative of concentration polarization, for the proteins investigated at high GFRs. Furthermore, the glomerular small-pore radius assessed from endogenous (neutral) protein sieving data was found to be smaller than previously determined using dextran or Ficoll as test molecules.
  •  
23.
  • Nordquist, Lina, et al. (author)
  • Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption
  • 2009
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 297:5, s. F1265-F1272
  • Journal article (peer-reviewed)abstract
    • C-peptide reduces diabetes-induced glomerular hyperfiltration in diabetic patients and experimental animal models. However, the mechanisms mediating the beneficial effect of C-peptide remain unclear. We investigated whether altered renal afferent-efferent arteriole tonus or alterations in tubular Na+ transport (T(Na)) in response to C-peptide administration mediate the reduction of diabetes-induced glomerular hyperfiltration. Glomerular filtration rate, filtration fraction, total and cortical renal blood flow, total kidney O2 consumption (QO2), T(Na), fractional Na+ and Li+ excretions, and tubular free-flow and stop-flow pressures were measured in anesthetized adult male normoglycemic and streptozotocin-diabetic Sprague-Dawley rats. The specific effect of C-peptide on transport-dependent QO2 was investigated in vitro in freshly isolated proximal tubular cells. C-peptide reduced glomerular filtration rate (-24%), stop-flow pressure (-8%), and filtration fraction (-17%) exclusively in diabetic rats without altering renal blood flow. Diabetic rats had higher baseline T(Na) (+40%), which was reduced by C-peptide. Similarly, C-peptide increased fractional Na+ (+80%) and Li+ (+47%) excretions only in the diabetic rats. None of these parameters was affected by vehicle treatments in either group. Baseline QO2 was 37% higher in proximal tubular cells from diabetic rats than controls and was normalized by C-peptide. C-peptide had no effect on ouabain-pretreated diabetic cells from diabetic rats. C-peptide reduced diabetes-induced hyperfiltration via a net dilation of the efferent arteriole and inhibition of tubular Na+ reabsorption, both potent regulators of the glomerular net filtration pressure. These findings provide new mechanistic insight into the beneficial effects of C-peptide on diabetic kidney function.
  •  
24.
  • O'Neill, Julie, et al. (author)
  • Acute SGLT inhibition normalizes O-2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats
  • 2015
  • In: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 309:3, s. F227-F234
  • Journal article (peer-reviewed)abstract
    • Early stage diabetic nephropathy is characterized by glomerular hyperfiltration and reduced renal tissue PO2. Recent observations have indicated that increased tubular Na+-glucose linked transport (SGLT) plays a role in the development of diabetes-induced hyperfiltration. The aim of the present study was to determine how inhibition of SLGT impacts upon PO2 in the diabetic rat kidney. Diabetes was induced by streptozotocin in Sprague-Dawley rats 2 wk before experimentation. Renal hemodynamics, excretory function, and renal O-2 homeostasis were measured in anesthetized control and diabetic rats during baseline and after acute SGLT inhibition using phlorizin (200 mg/kg ip). Baseline arterial pressure was similar in both groups and unaffected by SGLT inhibition. Diabetic animals displayed reduced baseline PO2 in both the cortex and medulla. SGLT inhibition improved cortical PO2 in the diabetic kidney, whereas it reduced medullary PO2 in both groups. SGLT inhibition reduced Na+ transport efficiency [tubular Na+ transport (TNa)/renal O-2 consumption (QO(2))] in the control kidney, whereas the already reduced TNa/QO(2) in the diabetic kidney was unaffected by SGLT inhibition. In conclusion, these data demonstrate that when SGLT is inhibited, renal cortex PO2 in the diabetic rat kidney is normalized, which implies that increased proximal tubule transport contributes to the development of hypoxia in the diabetic kidney. The reduction in medullary PO2 in both control and diabetic kidneys during the inhibition of proximal Na+ reabsorption suggests the redistribution of active Na+ transport to less efficient nephron segments, such as the medullary thick ascending limb, which results in medullary hypoxia.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 126
Type of publication
journal article (124)
research review (2)
Type of content
peer-reviewed (123)
other academic/artistic (3)
Author/Editor
Rippe, Bengt (26)
Rippe, Anna (18)
Palm, Fredrik (11)
Axelsson, Josefin (11)
Haraldsson, Börje, 1 ... (8)
Venturoli, Daniele (6)
show more...
Hultström, Michael, ... (6)
Franzén, Stephanie (6)
Aperia, A (5)
Carlström, Mattias (5)
Rippe, Catarina (5)
Nyström, Jenny, 1972 (5)
Sverrisson, Kristinn (5)
Carlstrom, M (5)
Öberg, Carl M. (5)
Persson, A. Erik G. (4)
Asgeirsson, Daniel (4)
Öberg, Carl (4)
Stenvinkel, P (3)
Brismar, Hjalmar (3)
Larsson, Erik (3)
Liss, Per, 1960- (3)
Wernerson, Annika (3)
Zelenina, M (3)
Daniel, L. (2)
Takahashi, S. (2)
Wernerson, A (2)
Zelenin, S (2)
Holtback, U (2)
Swärd, Karl (2)
Aperia, Anita (2)
Nielsen, S (2)
Frithiof, Robert (2)
Nangaku, Masaomi (2)
Svensson, Daniel (2)
Tryggvason, K (2)
Wåhlin, Nils (2)
Fox, J. (2)
Johansson, Bengt R, ... (2)
Friberg, Peter, 1956 (2)
Shiels, PG (2)
Buffat, C (2)
Ericsson, Madelene (2)
Madero, M (2)
Wijkstrom, J (2)
Hultenby, Kjell (2)
Nilsson, Ulf, 1957 (2)
Johnson, RJ (2)
Larsson, TE (2)
Oliver, C. (2)
show less...
University
Uppsala University (42)
Karolinska Institutet (42)
Lund University (33)
University of Gothenburg (15)
Linköping University (15)
Royal Institute of Technology (6)
show more...
Umeå University (4)
Stockholm University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (126)
Research subject (UKÄ/SCB)
Medical and Health Sciences (79)
Natural sciences (6)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view