SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0737 4038 OR L773:1537 1719 "

Sökning: L773:0737 4038 OR L773:1537 1719

  • Resultat 1-25 av 348
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aase-Remedios, Madeleine E., et al. (författare)
  • Evolution of the Spider Homeobox Gene Repertoire by Tandem and Whole Genome Duplication
  • 2023
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.
  •  
2.
  • Abdalaal, Hind, et al. (författare)
  • Collateral toxicity limits the evolution of bacterial Release Factor 2 towards total omnipotence
  • 2020
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 37:10, s. 2918-2930
  • Tidskriftsartikel (refereegranskat)abstract
    • When new genes evolve through modification of existing genes, there are often trade-offs between the new and original functions, making gene duplication and amplification necessary to buffer deleterious effects on the original function. We have used experimental evolution of a bacterial strain lacking peptide release factor 1 (RF1) in order to study how peptide release factor 2 (RF2) evolves to compensate the loss of RF1. As expected, amplification of the RF2-encoding gene prfB to high copy number was a rapid initial response, followed by the appearance of mutations in RF2 and other components of the translation machinery. Characterization of the evolved RF2 variants by their effects on bacterial growth rate, reporter gene expression, and in vitro translation termination reveals a complex picture of reduced discrimination between the cognate and near cognate stop codons and highlight a functional trade-off that we term “collateral toxicity”. We suggest that this type of trade-off may be a more serious obstacle in new gene evolution than the more commonly discussed evolutionary trade-offs between “old” and “new” functions of a gene, as it cannot be overcome by gene copy number changes. Further, we suggest a model for how RF2 autoregulation responds not only to alterations in the demand for RF2 activity, but also for RF1 activity.
  •  
3.
  •  
4.
  • Adler, M, et al. (författare)
  • Controls for Phylogeny and Robust Analysis in Pareto Task Inference
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 39:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the tradeoffs faced by organisms is a major goal of evolutionary biology. One of the main approaches for identifying these tradeoffs is Pareto task inference (ParTI). Two recent papers claim that results obtained in ParTI studies are spurious due to phylogenetic dependence (Mikami T, Iwasaki W. 2021. The flipping t-ratio test: phylogenetically informed assessment of the Pareto theory for phenotypic evolution. Methods Ecol Evol. 12(4):696–706) or hypothetical p-hacking and population-structure concerns (Sun M, Zhang J. 2021. Rampant false detection of adaptive phenotypic optimization by ParTI-based Pareto front inference. Mol Biol Evol. 38(4):1653–1664). Here, we show that these claims are baseless. We present a new method to control for phylogenetic dependence, called SibSwap, and show that published ParTI inference is robust to phylogenetic dependence. We show how researchers avoided p-hacking by testing for the robustness of preprocessing choices. We also provide new methods to control for population structure and detail the experimental tests of ParTI in systems ranging from ammonites to cancer gene expression. The methods presented here may help to improve future ParTI studies.
  •  
5.
  • Adler, Marlen, 1984-, et al. (författare)
  • High Fitness Costs and Instability of Gene Duplications Reduce Rates of Evolution of New Genes by Duplication-Divergence Mechanisms
  • 2014
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 31:6, s. 1526-1535
  • Tidskriftsartikel (refereegranskat)abstract
    • An important mechanism for generation of new genes is by duplication-divergence of existing genes. Duplication-divergence includes several different sub-models, such as subfunctionalization where after accumulation of neutral mutations the original function is distributed between two partially functional and complementary genes, and neofunctionalization where a new function evolves in one of the duplicated copies while the old function is maintained in another copy. The likelihood of these mechanisms depends on the longevity of the duplicated state, which in turn depends on the fitness cost and genetic stability of the duplications. Here, we determined the fitness cost and stability of defined gene duplications/amplifications on a low copy number plasmid. Our experimental results show that the costs of carrying extra gene copies are substantial and that each additional kbp of DNA reduces fitness by approximately 0.15%. Furthermore, gene amplifications are highly unstable and rapidly segregate to lower copy numbers in absence of selection. Mathematical modelling shows that the fitness costs and instability strongly reduces the likelihood of both sub- and neofunctionalization, but that these effects can be off-set by positive selection for novel beneficial functions.
  •  
6.
  • Adolfsson, Sofia, et al. (författare)
  • Lack of Dosage Compensation Accompanies the Arrested Stage of Sex Chromosome Evolution in Ostriches
  • 2013
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 30:4, s. 806-810
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex chromosome evolution is usually seen as a process that, once initiated, will inevitably progress toward an advanced stage of degeneration of the nonrecombining chromosome. However, despite evidence that avian sex chromosome evolution was initiated > 100 Ma, ratite birds have been trapped in an arrested stage of sex chromosome divergence. We performed RNA sequencing of several tissues from male and female ostriches and assembled the transcriptome de novo. A total of 315 Z-linked genes fell into two categories: those that have equal expression level in the two sexes (for which Z-W recombination still occurs) and those that have a 2-fold excess of male expression (for which Z-W recombination has ceased). We suggest that failure to evolve dosage compensation has constrained sex chromosome divergence in this basal avian lineage. Our results indicate that dosage compensation is a prerequisite for, not only a consequence of, sex chromosome evolution.
  •  
7.
  • Ali, Raja Hashim, et al. (författare)
  • Identifying Clusters of High Confidence Homologies in Multiple Sequence Alignments
  • 2019
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 36:10, s. 2340-2351
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sequence alignment (MSA) is ubiquitous in evolution and bioinformatics. MSAs are usually taken to be a known and fixed quantity on which to perform downstream analysis despite extensive evidence that MSA accuracy and uncertainty affect results. These errors are known to cause a wide range of problems for downstream evolutionary inference, ranging from false inference of positive selection to long branch attraction artifacts. The most popular approach to dealing with this problem is to remove (filter) specific columns in the MSA that are thought to be prone to error. Although popular, this approach has had mixed success and several studies have even suggested that filtering might be detrimental to phylogenetic studies. We present a graph-based clustering method to address MSA uncertainty and error in the software Divvier (available at https://github.com/simonwhelan/Divvier), which uses a probabilistic model to identify clusters of characters that have strong statistical evidence of shared homology. These clusters can then be used to either filter characters from the MSA (partial filtering) or represent each of the clusters in a new column (divvying). We validate Divvier through its performance on real and simulated benchmarks, finding Divvier substantially outperforms existing filtering software by retaining more true pairwise homologies calls and removing more false positive pairwise homologies. We also find that Divvier, in contrast to other filtering tools, can alleviate long branch attraction artifacts induced by MSA and reduces the variation in tree estimates caused by MSA uncertainty.
  •  
8.
  • Ament-Velásquez, Sandra Lorena, Ph.D. 1988-, et al. (författare)
  • The Dynamics of Adaptation to Stress from Standing Genetic Variation and de novo Mutations
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 39:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptation from standing genetic variation is an important process underlying evolution in natural populations, but we rarely get the opportunity to observe the dynamics of fitness and genomic changes in real time. Here, we used experimental evolution and Pool-Seq to track the phenotypic and genomic changes of genetically diverse asexual populations of the yeast Saccharomyces cerevisiae in four environments with different fitness costs. We found that populations rapidly and in parallel increased in fitness in stressful environments. In contrast, allele frequencies showed a range of trajectories, with some populations fixing all their ancestral variation in <30 generations and others maintaining diversity across hundreds of generations. We detected parallelism at the genomic level (involving genes, pathways, and aneuploidies) within and between environments, with idiosyncratic changes recurring in the environments with higher stress. In particular, we observed a tendency of becoming haploid-like in one environment, whereas the populations of another environment showed low overall parallelism driven by standing genetic variation despite high selective pressure. This work highlights the interplay between standing genetic variation and the influx of de novo mutations in populations adapting to a range of selective pressures with different underlying trait architectures, advancing our understanding of the constraints and drivers of adaptation.
  •  
9.
  • Amiri, H., et al. (författare)
  • Proliferation and deterioration of Rickettsia palindromic elements
  • 2002
  • Ingår i: Molecular biology and evolution. - 0737-4038 .- 1537-1719. ; 19:8, s. 1234-1243
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that Rickettsia Palindromic Elements (RPEs) have evolved as selfish DNA that mediate protein sequence evolution by being targeted to genes that code for RNA and proteins. Here, we have examined the phylogenetic depth of two RPEs that are located close to the genes encoding elongation factors Tu (tuf) and G (fus) in Rickettsia. An exceptional organization of the elongation factor genes was found in all 11 species examined, with complete or partial RPEs identified downstream of the tuf gene (RPE-tuf) in six species and of the fus gene (RPE-fus) in 10 species. A phylogenetic reconstruction shows that both RPE-tuf and RPE-fus have evolved in a manner that is consistent with the expected species divergence. The analysis provides evidence for independent loss of RPE-tuf in several species, possibly mediated by short repetitive sequences flanking the site of excision. The remaining RPE-tuf sequences evolve as neutral sequences in different stages of deterioration. Likewise, highly fragmented remnants of the RPE-fus sequence were identified in two species. This suggests that genome-specific differences in the content of RPEs are the result of recent loss rather than recent proliferation.
  •  
10.
  • Andersson, Jan O, et al. (författare)
  • Genome degradation is an ongoing process in Rickettsia
  • 1999
  • Ingår i: Molecular biology and evolution. - : SOC MOLECULAR BIOLOGY EVOLUTION. - 0737-4038 .- 1537-1719. ; 16:9, s. 1178-1191
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • To study reductive evolutionary processes in bacterial genomes, we examine sequences in the Rickettsia genomes which are unconstrained by selection and evolve as pseudogenes, one of which is the metK gene, which codes for AdoMet synthetase. Here, we sequenced the metK gene and three surrounding genes in eight different species of the genus Rickettsia. The metK gene was found to contain a high incidence of deletions in six lineages, while the three genes in its surroundings were functionally conserved in all eight lineages. A more drastic example of gene degradation was identified in the metK downstream region, which contained an open reading frame in Rickettsia felis. Remnants of this open reading frame could be reconstructed in five additional species by eliminating sites of frameshift mutations and termination codons. A detailed examination of the two reconstructed genes revealed that deletions strongly predominate over insertions and that there is a strong transition bias for point mutations which is coupled to an excess of GC-to-AT substitutions. Since the molecular evolution of these inactive genes should reflect the rates and patterns of neutral mutations, our results strongly suggest that there is a high spontaneous rate of deletions as well as a strong mutation bias toward AT pairs in the Rickettsia genomes. This may explain the low genomic G + C content (29%), the small genome size (1.1 Mb), and the high noncoding content (24%), as well as the presence of several pseudogenes in the Rickettsia prowazekii genome.
  •  
11.
  • Andersson, Jan O, et al. (författare)
  • Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes
  • 2001
  • Ingår i: Molecular biology and evolution. - 0737-4038 .- 1537-1719. ; 18:5, s. 829-839
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of neutrally evolving sequences suggest that differences in eukaryotic genome sizes result from different rates of DNA loss. However, very few pseudogenes have been identified in microbial species, and the processes whereby genes and genomes deteriorate in bacteria remain largely unresolved. The typhus-causing agent, Rickettsia prowazekii, is exceptional in that as much as 24% of its 1.1-Mb genome consists of noncoding DNA and pseudogenes. To test the hypothesis that the noncoding DNA in the R. prowazekii genome represents degraded remnants of ancestral genes, we systematically examined all of the identified pseudogenes and their flanking sequences in three additional Rickettsia species. Consistent with the hypothesis, we observe sequence similarities between genes and pseudogenes in one species and intergenic DNA in another species. We show that the frequencies and average sizes of deletions are larger than insertions in neutrally evolving pseudogene sequences. Our results suggest that inactivated genetic material in the Rickettsia genomes deteriorates spontaneously due to a mutation bias for deletions and that the noncoding sequences represent DNA in the final stages of this degenerative process.
  •  
12.
  • ANDRADE, S.C.S, et al. (författare)
  • A transcriptomic approach to ribbon worm systematics (Nemertea): resolving the Pilidiophora problem.
  • 2014
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 31:12, s. 3206-3215
  • Tidskriftsartikel (refereegranskat)abstract
    • Resolving the deep relationships of ancient animal lineages has proven difficult using standard Sanger-sequencing approaches with a handful of markers. We thus reassess the relatively well-studied phylogeny of the phylum Nemertea (ribbon worms)—for which the targeted gene approaches had resolved many clades but had left key phylogenetic gaps—by using a phylogenomic approach using Illumina-based de novo assembled transcriptomes and automatic orthology prediction methods. The analysis of a concatenated data set of 2,779 genes (411,138 amino acids) with about 78% gene occupancy and a reduced version with 95% gene occupancy, under evolutionary models accounting or not for site-specific amino acid replacement patterns results in a well-supported phylogeny that recovers all major accepted nemertean clades with the monophyly of Heteronemertea, Hoplonemertea, Monostilifera, being well supported. Significantly, all the ambiguous patterns inferred from Sanger-based approaches were resolved, namely the monophyly of Palaeonemertea and Pilidiophora. By testing for possible conflict in the analyzed supermatrix, we observed that concatenation was the best solution, and the results of the analyses should settle prior debates on nemertean phylogeny. The study highlights the importance, feasibility, and completeness of Illumina-based phylogenomic data matrices.
  •  
13.
  • Andrade, S. C. S., et al. (författare)
  • Articulating "Archiannelids": Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa
  • 2015
  • Ingår i: Molecular Biology and Evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 32:11, s. 2860-2875
  • Tidskriftsartikel (refereegranskat)abstract
    • Annelid disparity has resulted in morphological-based classifications that disagree with phylogenies based on Sanger sequencing and phylogenomic analyses. However, the data used for the latter studies came from various sources and technologies, involved poorly occupied matrices and lacked key lineages. Here, we generated a new Illumina-based data set to address annelid relationships from a fresh perspective, independent from previously generated data and with nearly fully occupied matrices. Our sampling reflects the span of annelid diversity, including two symbiotic annelid groups (Myzostomida and Spinther) and five meiofaunal groups once referred to as part of Archiannelida (three from Protodrilida, plus Dinophilus and Polygordius). As well as the placement of these unusual annelids, we sought to address the overall phylogeny of Annelida, and provide a new perspective for naming of major clades. Our results largely corroborate the phylogenomic results of Weigert et al. (2014; Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol. 31: 1391-1401), with "Magelona + Owenia" and Chaetopteridae forming a grade with respect to all other annelids. Echiura and Sipuncula are supported as being annelid groups, with Sipuncula closest to amphinomids as sister group to Sedentaria and Errantia. We recovered the three Protodrilida terminals as sister clade to Phyllodocida and Eunicida (=clade Aciculata). We therefore place Protodrilida as part of Errantia. Polygordius was found to be sister group to the scaleworm terminal and the possibility that it is a simplified scaleworm clade, as has been shown for the former family Pisionidae, is discussed. Our results were equivocal with respect to Dinophilus, Myzostomida, and Spinther possibly owing to confounding long-branch effects.
  •  
14.
  •  
15.
  • Armisen, David, et al. (författare)
  • Transcriptome-based phylogeny of the semi-aquatic bugs (Hemiptera Heteroptera: Gerromorpha) reveals patterns of lineage expansion in a series of new adaptive zones
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 39:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Key innovations enable access to new adaptive zones and are often linked to increased species diversification. As such, innovations have attracted much attention, yet their concrete consequences on the subsequent evolutionary trajectory and diversification of the bearing lineages remain unclear. Water striders and relatives (Hemiptera: Heteroptera: Gerromorpha) represent a monophyletic lineage of insects that transitioned to live on the water-air interface and that diversified to occupy ponds, puddles, streams, mangroves and even oceans. This lineage offers an excellent model to study the patterns and processes underlying species diversification following the conquest of new adaptive zones. However, such studies require a reliable and comprehensive phylogeny of the infraorder. Based on whole transcriptomic datasets of 97 species and fossil records, we reconstructed a new phylogeny of the Gerromorpha that resolved inconsistencies and uncovered strong support for previously unknown relationships between some important taxa. We then used this phylogeny to reconstruct the ancestral state of a set of adaptations associated with water surface invasion (fluid locomotion, dispersal and transition to saline waters) and sexual dimorphism. Our results uncovered important patterns and dynamics of phenotypic evolution, revealing how the initial event of water surface invasion enabled multiple subsequent transitions to new adaptive zones on the water surfaces. This phylogeny and the associated transcriptomic datasets constitute highly valuable resources, making Gerromorpha an attractive model lineage to study phenotypic evolution.
  •  
16.
  • Aswad, Amr, et al. (författare)
  • Evolutionary history of endogenous Human Herpesvirus 6 reflects human migration out of Africa
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 38:1, s. 96-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result about 70 million people harbour the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if i) these integrations are ancient, ii) if they still occur, and iii) whether circulating virus strains differ from integrated ones. Here we used next generation sequencing and mining of public human genome datasets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly-related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or "reactivation" of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa.
  •  
17.
  • Atkinson, Gemma, et al. (författare)
  • Evolution of elongation factor G and the origins of mitochondrial and chloroplast forms
  • 2011
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 28:3, s. 1281-1292
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein synthesis elongation factor G (EF-G) is an essential protein with central roles in both the elongation and ribosome recycling phases of protein synthesis. Although EF-G evolution is predicted to be conservative, recent reports suggest otherwise. We have characterized EF-G in terms of its molecular phylogeny, genomic context and patterns of amino acid substitution. We find that most bacteria carry a single "canonical" EF-G, which is phylogenetically conservative and encoded in an str operon. However, we also find a number of EF-G paralogs. These include a pair of EF-Gs that are mostly found together and in an eclectic subset of bacteria, specifically delta-proteobacteria, spirochaetes and planctomycetes (the "spd" bacteria). These spdEFGs have also given rise to the mitochondrial factors mtEFG1 and mtEFG2, which probably arrived in eukaryotes before the eukaryotic last common ancestor. Meanwhile, chloroplasts apparently use an α-proteobacterial derived EF-G, rather than the expected cyanobacterial form. The long-term co-maintenance of the spd/mtEFGs may be related to their subfunctionalization for translocation and ribosome recycling. Consistent with this, patterns of sequence conservation and site-specific evolutionary rate shifts suggest that the faster evolving spd/mtEFG2 has lost translocation function, but, surprisingly, the protein also shows little conservation of sites related to recycling activity. On the other hand, spd/mtEFG1, although more slowly evolving, shows signs of substantial remodeling. This is particularly extensive in the GTPase domain, including a highly conserved three amino acid insertion in switch I. We suggest that sub-functionalization of the spd/mtEFGs is not a simple case of specialization for subsets of original activities. Rather the duplication allows the release of one paralog from the selective constraints imposed by dual functionality thus allowing it to become more highly specialized. Thus the potential for fine-tuning afforded by subfunctionalization may explain the maintenance of EF-G paralogs.
  •  
18.
  • Axelsson, Erik, et al. (författare)
  • Quantification of Adaptive Evolution of Genes Expressed in Avian Brain and the Population Size Effect on the Efficacy of Selection
  • 2009
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 26:5, s. 1073-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether protein evolution is mainly due to fixation of beneficial alleles by positive selection or to random genetic drift has remained a contentious issue over the years. Here, we use two genomewide polymorphism data sets collected from chicken populations, together with divergence data from >5,000 chicken-zebra finch gene orthologs expressed in brain, to assess the amount of adaptive evolution in protein-coding genes of birds. First, we show that estimates of the fixation index (FI, the ratio of fixed nonsynonymous-to-synonymous changes over the ratio of the corresponding polymorphisms) are highly dependent on the character of the underlying data sets. Second, by using polymorphism data from high-frequency alleles, to avoid the confounding effect of slightly deleterious mutations segregating at low frequency, we estimate that about 20% of amino acid changes have been brought to fixation through positive selection during avian evolution. This estimate is intermediate to that obtained in humans (lower) and flies as well as bacteria (higher), and is consistent with population genetics theory that stipulates a positive relationship between the efficiency of selection and the effective population size. Further, by comparing the FIs for common and all alleles, we estimate that approximate to 20% of nonsynonymous variation segregating in chicken populations represent slightly deleterious mutations, which is less than in Drosophila. Overall, these results highlight the link between the effective population size and positive as well as negative selection.
  •  
19.
  • Axelsson, Erik, et al. (författare)
  • The effect of ancient DNA damage on inferences of demographic histories.
  • 2008
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 25:10, s. 2181-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of ancient DNA (aDNA) is casting new light on many evolutionary questions. However, problems associated with the postmortem instability of DNA may complicate the interpretation of aDNA data. For example, in population genetic studies, the inclusion of damaged DNA may inflate estimates of diversity. In this paper, we examine the effect of DNA damage on population genetic estimates of ancestral population size. We simulate data using standard coalescent simulations that include postmortem damage and show that estimates of effective population sizes are inflated around, or right after, the sampling time of the ancestral DNA sequences. This bias leads to estimates of increasing, and then decreasing, population sizes, as observed in several recently published studies. We reanalyze a recently published data set of DNA sequences from the Bison (Bison bison/Bison priscus) and show that the signal for a change in effective population size in this data set vanishes once the effects of putative damage are removed. Our results suggest that population genetic analyses of aDNA sequences, which do not accurately account for damage, should be interpreted with great caution.
  •  
20.
  • Backström, Niclas, et al. (författare)
  • Evidence from a House Finch (Haemorhous mexicanus) Spleen Transcriptome for Adaptive Evolution and Biased Gene Conversion in Passerine Birds
  • 2013
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 30:5, s. 1046-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying genes influenced by natural selection can provide information about lineage-specific adaptations, and transcriptomes generated by next-generation sequencing are a useful resource for identifying such genes. Here, we utilize a spleen transcriptome for the house finch (Haemorhous mexicanus), an emerging model for sexual selection and disease ecology, together with previously sequenced avian genomes (chicken, turkey, and zebra finch), to investigate lineage-specific adaptations within birds. An analysis of 4,398 orthologous genes revealed a significantly higher ratio of nonsynonymous to synonymous substitutions and significantly higher GC content in passerines than in galliforms, an observation deviating from strictly neutral expectations but consistent with an effect of biased gene conversion on the evolutionary rate in passerines. These data also showed that genes exhibiting signs of positive selection and fast evolution in passerines have functional roles related to fat metabolism, neurodevelopment, and ion binding.
  •  
21.
  • Bartke, Katrin, et al. (författare)
  • Genetic Architecture and Fitness of Bacterial Interspecies Hybrids
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 38:4, s. 1472-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of a conjugative plasmid into a bacterial chromosome can promote the transfer of chromosomal DNA to other bacteria. Intraspecies chromosomal conjugation is believed responsible for creating the global pathogens Klebsiella pneumoniae ST258 and Escherichia coli ST1193. Interspecies conjugation is also possible but little is known about the genetic architecture or fitness of such hybrids. To study this, we generated by conjugation 14 hybrids of E. coli and Salmonella enterica. These species belong to different genera, diverged from a common ancestor >100 Ma, and share a conserved order of orthologous genes with similar to 15% nucleotide divergence. Genomic analysis revealed that all but one hybrid had acquired a contiguous segment of donor E. coli DNA, replacing a homologous region of recipient Salmonella chromosome, and ranging in size from similar to 100 to >4,000 kb. Recombination joints occurred in sequences with higher-than-average nucleotide identity. Most hybrid strains suffered a large reduction in growth rate, but the magnitude of this cost did not correlate with the length of foreign DNA. Compensatory evolution to ameliorate the cost of low-fitness hybrids pointed towards disruption of complex genetic networks as a cause. Most interestingly, 4 of the 14 hybrids, in which from 45% to 90% of the Salmonella chromosome was replaced with E. coli DNA, showed no significant reduction in growth fitness. These data suggest that the barriers to creating high-fitness interspecies hybrids may be significantly lower than generally appreciated with implications for the creation of novel species.
  •  
22.
  • Bechsgaard, Jesper, et al. (författare)
  • Evidence for Faster X Chromosome Evolution in Spiders
  • 2019
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 36:6, s. 1281-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • In species with chromosomal sex determination, X chromosomes are predicted to evolve faster than autosomes because of positive selection on recessive alleles or weak purifying selection. We investigated X chromosome evolution in Stegodyphus spiders that differ in mating system, sex ratio, and population dynamics. We assigned scaffolds to X chromosomes and autosomes using a novel method based on flow cytometry of sperm cells and reduced representation sequencing. We estimated coding substitution patterns (dN/dS) in a subsocial outcrossing species (S. africanus) and its social inbreeding and female-biased sister species (S. mimosarum), and found evidence for faster-X evolution in both species. X chromosome-to-autosome diversity (piX/piA) ratios were estimated in multiple populations. The average piX/piA estimates of S. africanus (0.57 [95% CI: 0.55–0.60]) was lower than the neutral expectation of 0.75, consistent with more hitchhiking events on X-linked loci and/or a lower X chromosome mutation rate, and we provide evidence in support of both. The social species S. mimosarum has a significantly higher piX/piA ratio (0.72 [95% CI: 0.65–0.79]) in agreement with its female-biased sex ratio. Stegodyphus mimosarum also have different piX/piA estimates among populations, which we interpret as evidence for recurrent founder events. Simulations show that recurrent founder events are expected to decrease the piX/piA estimates in S. mimosarum, thus underestimating the true effect of female-biased sex ratios. Finally, we found lower synonymous divergence on X chromosomes in both species, and the male-to-female substitution ratio to be higher than 1, indicating a higher mutation rate in males.
  •  
23.
  • Beichman, Annabel C, et al. (författare)
  • Aquatic Adaptation and Depleted Diversity : A Deep Dive into the Genomes of the Sea Otter and Giant Otter.
  • 2019
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 36:12, s. 2631-2655
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite its recent invasion into the marine realm, the sea otter (Enhydra lutris) has evolved a suite of adaptations for life in cold coastal waters, including limb modifications and dense insulating fur. This uniquely dense coat led to the near-extinction of sea otters during the 18th-20th century fur trade and an extreme population bottleneck. We used the de novo genome of the southern sea otter (E. l. nereis) to reconstruct its evolutionary history, identify genes influencing aquatic adaptation, and detect signals of population bottlenecks. We compared the genome of the southern sea otter with the tropical freshwater-living giant otter (Pteronura brasiliensis) to assess common and divergent genomic trends between otter species, and with the closely related northern sea otter (E. l. kenyoni) to uncover population-level trends. We found signals of positive selection in genes related to aquatic adaptations, particularly limb development and polygenic selection on genes related to hair follicle development. We found extensive pseudogenization of olfactory receptor genes in both the sea otter and giant otter lineages, consistent with patterns of sensory gene loss in other aquatic mammals. At the population level, the southern sea otter and the northern sea otter showed extremely low genomic diversity, signals of recent inbreeding, and demographic histories marked by population declines. These declines may predate the fur trade and appear to have resulted in an increase in putatively deleterious variants that could impact the future recovery of the sea otter.
  •  
24.
  • Ben-David, Moshe, et al. (författare)
  • Enzyme Evolution An Epistatic Ratchet versus a Smooth Reversible Transition
  • 2020
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 37:4, s. 1133-1147
  • Tidskriftsartikel (refereegranskat)abstract
    • Evolutionary trajectories are deemed largely irreversible. In a newly diverged protein, reversion of mutations that led to the functional switch typically results in loss of both the new and the ancestral functions. Nonetheless, evolutionary transitions where reversions are viable have also been described. The structural and mechanistic causes of reversion compatibility versus incompatibility therefore remain unclear. We examined two laboratory evolution trajectories of mammalian paraoxonase-1, a lactonase with promiscuous organophosphate hydrolase (OPH) activity. Both trajectories began with the same active-site mutant, His115Trp, which lost the native lactonase activity and acquired higher OPH activity. A neo-functionalization trajectory amplified the promiscuous OPH activity, whereas the re-functionalization trajectory restored the native activity, thus generating a new lactonase that lacks His115. The His115 revertants of these trajectories indicated opposite trends. Revertants of the neo-functionalization trajectory lost both the evolved OPH and the original lactonase activity. Revertants of the trajectory that restored the original lactonase function were, however, fully active. Crystal structures and molecular simulations show that in the newly diverged OPH, the reverted His115 and other catalytic residues are displaced, thus causing loss of both the original and the new activity. In contrast, in the re-functionalization trajectory, reversion compatibility of the original lactonase activity derives from mechanistic versatility whereby multiple residues can fulfill the same task. This versatility enables unique sequence-reversible compositions that are inaccessible when the active site was repurposed toward a new function.
  •  
25.
  • Bergström, Anders, et al. (författare)
  • A high-definition view of functional genetic variation from natural yeast genomes.
  • 2014
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 31:4, s. 872-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 348
Typ av publikation
tidskriftsartikel (344)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (334)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Ellegren, Hans (25)
Jakobsson, Mattias (12)
Webster, Matthew T. (10)
Andersson, Dan I. (8)
Ingvarsson, Pär K (7)
aut (6)
visa fler...
Axelsson, Erik (6)
Slotte, Tanja (6)
Dalen, Love (6)
Johannesson, Hanna (6)
Arnason, Ulfur (6)
Hansson, Bengt (5)
Wolf, Jochen B. W. (5)
Hughes, Diarmaid, 19 ... (5)
Moulton, Vincent (5)
Sjödin, Per (5)
Lascoux, Martin (5)
Andersson, Siv (5)
Götherström, Anders (5)
Näsvall, Joakim (4)
Lindblad-Toh, Kersti ... (4)
Fredriksson, Robert (4)
Warringer, Jonas, 19 ... (4)
Scofield, Douglas, 1 ... (4)
Andersson, Leif (4)
Schlebusch, Carina, ... (4)
Gilbert, M. Thomas P ... (4)
Andersson, Jan O (4)
Savolainen, Peter (4)
Guschanski, Katerina ... (4)
Karlsson, Magnus (3)
Blomberg, Anders, 19 ... (3)
Schiöth, Helgi B. (3)
Nilsson, Maria (3)
Kutschera, Verena E. (3)
Carlborg, Örjan (3)
Street, Nathaniel, 1 ... (3)
Thomas, Mark G. (3)
Whelan, Simon (3)
Willerslev, Eske (3)
Mank, Judith E. (3)
Ettema, Thijs J. G. (3)
Andersson, Siv G. E. (3)
Bunikis, Ignas (3)
Glemin, Sylvain (3)
Thollesson, Mikael (3)
Kurland, CG (3)
Klasson, Lisa (3)
Hallström, Björn (3)
Burri, Reto (3)
visa färre...
Lärosäte
Uppsala universitet (213)
Lunds universitet (45)
Stockholms universitet (33)
Karolinska Institutet (24)
Sveriges Lantbruksuniversitet (23)
Umeå universitet (22)
visa fler...
Göteborgs universitet (15)
Kungliga Tekniska Högskolan (9)
Naturhistoriska riksmuseet (9)
Linköpings universitet (6)
Mittuniversitetet (3)
Chalmers tekniska högskola (3)
Högskolan i Skövde (2)
Linnéuniversitetet (2)
Högskolan Kristianstad (1)
Södertörns högskola (1)
RISE (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (343)
Odefinierat språk (4)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (264)
Medicin och hälsovetenskap (15)
Lantbruksvetenskap (11)
Teknik (2)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy