SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0927 6505 OR L773:1873 2852 "

Sökning: L773:0927 6505 OR L773:1873 2852

  • Resultat 1-25 av 92
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindner, Manfred, et al. (författare)
  • Tomography of the Earth's core using supernova neutrinos
  • 2003
  • Ingår i: Astroparticle physics. - : Elsevier B.V.. - 0927-6505 .- 1873-2852. ; 19:6, s. 755-770
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the possibility to use the neutrinos coming from a future galactic supernova explosion to perform neutrino oscillation tomography of the Earth's core. We propose to use existing or planned detectors, resulting in an additional payoff. Provided that all of the discussed uncertainties can be reduced as expected, we find that the average matter densities of the Earth's inner and outer cores could be measured with a precision competitive with geophysics. However, since seismic waves are more sensitive to matter density jumps than average matter densities, neutrino physics would give partly complementary information.
  •  
2.
  • Ahrens, J., et al. (författare)
  • Search for supernova neutrino bursts with the AMANDA detector
  • 2001
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 16:4, s. 345-359
  • Tidskriftsartikel (refereegranskat)abstract
    • The core collapse of a massive star in the Milky Way will produce a neutrino burst, intense enough to be detected by existing underground detectors. The AMANDA neutrino telescope located deep in the South Pole ice can detect MeV neutrinos by a collective rate increase in all photo-multipliers on top of dark noise. The main source of light comes from positrons produced in the CC reaction of anti-electron neutrinos on free protons ve + p → e+ + n. This paper describes the first supernova search performed on the full sets of data taken during 1997 and 1998 (215 days of live time) with 302 of the detector's optical modules. No candidate events resulted from this search. The performance of the detector is calculated, yielding a 70% coverage of the galaxy with one background fake per year with 90% efficiency for the detector configuration under study. An upper limit at the 90% c.l. on the rate of stellar collapses in the Milky Way is derived, yielding 4.3 events per year. A trigger algorithm is presented and its performance estimated. Possible improvements of the detector hardware are reviewed.
  •  
3.
  • Ambrosio, M, et al. (författare)
  • A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector
  • 2002
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 18:1, s. 27-41
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a search method for fast moving (beta = v/c > 5 x 10(-3)) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two-years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5 x 10(-15) cm(-2) s(-1) sr(-1) in the velocity range 5 x 10(-3) less than or equal to beta less than or equal to 0.99 and for nucleon decay catalysis cross-section smaller than similar to1 mb (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
4.
  • Ambrosio, M, et al. (författare)
  • Measurement of the residual energy of muons in the Gran Sasso underground laboratories
  • 2003
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 19:3, s. 313-328
  • Tidskriftsartikel (refereegranskat)abstract
    • The MACRO detector was located in the Hall B of the Gran Sasso underground laboratories under an average rock overburden of 3700 hg/cm(2). A transition radiation detector composed of three identical modules, covering a total horizontal area of 36 m(2), was installed inside the empty upper part of the detector in order to measure the residual energy of muons. This paper presents the measurement of the residual energy of single and double muons crossing the apparatus. Our data show that double muons are more energetic than single ones. This measurement is performed over a standard rock depth range from 3000 to 6500 hg/cm(2). (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
5.
  • Ambrosio, M, et al. (författare)
  • Moon and Sun shadowing effect in the MACRO detector
  • 2003
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 20:2, s. 145-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Using data collected by the MACRO experiment from 1989 to the end of its operations in 2000, we have studied in the underground muon flux the shadowing. effects due to both the Moon and the Sun. We have observed the shadow cast by the Moon at its apparent position with a significance of 6.5sigma. The Moon shadowing effect has been used to verify the pointing capability of the detector and to determine the instrument resolution for the search of muon excesses from any direction of the celestial sphere. The dependence of the effect on the geomagnetic field is clearly shown by splitting the data sample in day and night observations. The Sun shadow, observed with a significance of 4.6sigma is displaced by about 0.6degrees from its apparent position. In this case however the explanation resides in the configuration of the Solar and Interplanetary Magnetic Fields, which affect the propagation of cosmic ray particles between the Sun, and the Earth. The displacement of the Sun shadow with respect to the real Sun position has been used to establish an upper limit on the antimatter flux in cosmic rays of about 48% at 68% c.l. and primary energies of about 20 TeV. (C) 2003 Elsevier B.V. All rights reserved.
  •  
6.
  • Ambrosio, M, et al. (författare)
  • Search for cosmic ray sources using muons detected by the MACRO experiment
  • 2003
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 18:6, s. 615-627
  • Tidskriftsartikel (refereegranskat)abstract
    • The MACRO underground detector at Gran Sasso Laboratory recorded 60 million secondary cosmic ray muons from February 1989 until December 2000. Different techniques were used to analyze this sample in search for density excesses from astrophysical point-like sources. No evidence for DC excesses for any source in an all-sky survey is reported. In addition, searches for muon excess correlated with the known binary periods of Cygnus X-3 and Hercules X-1, and searches for statistically significant bursting episodes from known gamma-ray sources are also proved negative. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
7.
  • Ambrosio, M, et al. (författare)
  • Search for diffuse neutrino flux from astrophysical sources with MACRO
  • 2003
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 19:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Many galactic and extragalactic astrophysical sources are currently considered promising candidates as high-energy neutrino emitters. Astrophysical neutrinos can be detected as upward-going muons produced in charged-current interactions with the medium surrounding the detector. The expected neutrino fluxes from various models start to dominate on the atmospheric neutrino background at neutrino energies above some tens of TeV. We present the results of a search for an excess of high-energy upward-going muons among the sample of data collected by MACRO during similar to5.8 years of effective running time. No significant evidence for this signal was found. As a consequence, an upper limit on the flux of upward-going muons from high-energy neutrinos was set at the level of 1.7 x 10(-14) cm(-2) s(-1) sr(-1). The corresponding upper limit for the diffuse neutrino flux was evaluated assuming a neutrino power law spectrum. Our result was compared with theoretical predictions and upper limits from other experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
8.
  • Andres, E., et al. (författare)
  • The AMANDA neutrino telescope : Principle of operation and first results
  • 2000
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 13:1, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.
  •  
9.
  • Aartsen, M. G., et al. (författare)
  • Characterization of the atmospheric muon flux in IceCube
  • 2016
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 78, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.
  •  
10.
  • Aartsen, M. G., et al. (författare)
  • Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
  • 2020
  • Ingår i: Astroparticle physics. - : ELSEVIER. - 0927-6505 .- 1873-2852. ; 116
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere. 
  •  
11.
  • Aartsen, M. G., et al. (författare)
  • Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data
  • 2015
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 66, s. 39-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of similar to 60 TeV to the PeV-scale [1]. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years of IceCube data, taken between 2008 and 2011. The first method is an autocorrelation test, applied separately to the northern and southern sky. The second method is a multipole analysis, which expands the measured data in the northern hemisphere into spherical harmonics and uses the resulting expansion coefficients to separate signal from background. With both methods, the results are consistent with the background expectation with a slightly more sparse spatial distribution, corresponding to an underfluctuation. Depending on the assumed number of sources, the resulting upper limit on the flux per source in the northern hemisphere for an E-2 energy spectrum ranges from similar to 1.5. 10(-8) GeV/cm(2) s(-1), in the case of one assumed source, to similar to 4. 10(-10) GeV/cm(2) s(-1), in the case of 3500 assumed sources.
  •  
12.
  • Aartsen, M. G., et al. (författare)
  • The IceCube realtime alert system
  • 2017
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 92, s. 30-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries.
  •  
13.
  • Abarr, Q., et al. (författare)
  • Performance of the X-Calibur hard X-ray polarimetry mission during its 2018/19 long-duration balloon flight
  • 2022
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 143, s. 102749-
  • Tidskriftsartikel (refereegranskat)abstract
    • X-Calibur is a balloon-borne telescope that measures the polarization of high-energy X-rays in the 15-50 keV energy range. The instrument makes use of the fact that X-rays scatter preferentially perpendicular to the polarization direction. A beryllium scattering element surrounded by pixellated CZT detectors is located at the focal point of the InFOC mu S hard X-ray mirror. The instrument was launched for a long-duration balloon (LDB) flight from McMurdo (Antarctica) on December 29, 2018, and obtained the first constraints of the hard X-ray polarization of an accretion-powered pulsar. Here, we describe the characterization and calibration of the instrument on the ground and its performance during the flight, as well as simulations of particle backgrounds and a comparison to measured rates. The pointing system and polarimeter achieved the excellent projected performance. The energy detection threshold for the anticoincidence system was found to be higher than expected and it exhibited unanticipated dead time. Both issues will be remedied for future flights. Overall, the mission performance was nominal, and results will inform the design of the follow-up mission XL-Calibur, which is scheduled to be launched in summer 2022.
  •  
14.
  • Abarr, Q., et al. (författare)
  • XL-Calibur - a second-generation balloon-borne hard X-ray polarimetry mission
  • 2021
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 126
  • Tidskriftsartikel (refereegranskat)abstract
    • XL-Calibur is a hard X-ray (15-80 keV) polarimetry mission operating from a stabilised balloon-borne platform in the stratosphere. It builds on heritage from the X-Calibur mission, which observed the accreting neutron star GX 301 2 from Antarctica, between December 29th 2018 and January 1st 2019. The XL-Calibur design incorporates an X-ray mirror, which focusses X-rays onto a polarimeter comprising a beryllium rod surrounded by Cadmium Zinc Telluride (CZT) detectors. The polarimeter is housed in an anticoincidence shield to mitigate background from particles present in the stratosphere. The mirror and polarimeter-shield assembly are mounted at opposite ends of a 12 m long lightweight truss, which is pointed with arcsecond precision by WASP - the Wallops Arc Second Pointer. The XL-Calibur mission will achieve a substantially improved sensitivity over X-Calibur by using a larger effective area X-ray mirror, reducing background through thinner CZT detectors, and improved anticoincidence shielding. When observing a 1 Crab source for tdaydays, the Minimum Detectable Polarisation (at 99% confidence level) is similar to 2%.t(day)(-1/2). The energy resolution at 40 keV is-5.9 keV. The aim of this paper is to describe the design and performance of the XL-Caliburmission, as well as the foreseen science programme.
  •  
15.
  • Abbasi, R., et al. (författare)
  • All-particle cosmic ray energy spectrum measured with 26 IceTop stations
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 44, s. 40-58
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km(2). The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0 degrees and 46 degrees. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles theta < 30 degrees, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed. 
  •  
16.
  • Abbasi, R., et al. (författare)
  • Background studies for acoustic neutrino detection at the South Pole
  • 2012
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 35:6, s. 312-324
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E-v>10(11) GeV is derived from acoustic data taken over eight months. (C) 2011 Elsevier B.V. All rights reserved.
  •  
17.
  • Abbasi, R., et al. (författare)
  • Cosmic ray composition and energy spectrum from 1-30 PeV using the 40-string configuration of IceTop and IceCube
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 42, s. 15-32
  • Tidskriftsartikel (refereegranskat)abstract
    • The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
  •  
18.
  • Abbasi, R., et al. (författare)
  • Measurement of acoustic attenuation in South Pole ice
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:6, s. 382-393
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 +/- 0.57 km(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda equivalent to 1/alpha of similar to 300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
  •  
19.
  • Abbasi, R., et al. (författare)
  • Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy
  • 2010
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 33:5-6, s. 277-286
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at similar to 5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background. (C) 2010 Elsevier B.V. All rights reserved.
  •  
20.
  • Abbasi, R., et al. (författare)
  • Search for neutrino-induced cascades with five years of AMANDA data
  • 2011
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:6, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E-2 is less than 5.0 x 10(-7) GeV s(-1) sr(-1) cm(-2) at a 90% C.L. Here, 90% of the simulated signal would fall within the energy range 40 TeV to 9 PeV. We discuss flux limits in the context of several specific models of extraterrestrial and prompt atmospheric neutrino production.
  •  
21.
  • Abbasi, R., et al. (författare)
  • The design and performance of IceCube DeepCore
  • 2012
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 35:10, s. 615-624
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
  •  
22.
  • Abbasi, R., et al. (författare)
  • The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector
  • 2010
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:1, s. 48-58
  • Tidskriftsartikel (refereegranskat)abstract
    • The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm had-ron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.
  •  
23.
  • Abdallah, J., et al. (författare)
  • Study of multi-muon bundles in cosmic ray showers detected with the DELPHI detector at LEP
  • 2007
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 28:3, s. 273-286
  • Tidskriftsartikel (refereegranskat)abstract
    • The DELPHI detector at LEP has been used to measure multi-muon bundles originating from cosmic ray interactions with air. The cosmic events were recorded in "parasitic mode" between individual e(+)e(-) interactions and the total live time of this data taking is equivalent to 1.6 x 10(6) s. The DELPHI apparatus is located about 100 m underground and the 84 metres rock overburden imposes a cutoff of about 52 GeV/c on muon momenta. The data from the large volume Hadron Calorimeter allowed the muon multiplicity of 54,201 events to be reconstructed. The resulting muon multiplicity distribution is compared with the prediction of the Monte Carlo simulation based on CORSIKA/QGSJETOI. The model fails to describe the abundance of high multiplicity events. The impact of QGSJET internal parameters on the results is also studied.
  •  
24.
  • Abdellaoui, G., et al. (författare)
  • EUSO-SPB1 mission and science
  • 2024
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 154, s. 102891-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search.
  •  
25.
  • Abdellaoui, G., et al. (författare)
  • EUSO-TA - First results from a ground-based EUSO telescope
  • 2018
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 102, s. 98-111
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-TA is a ground-based telescope, installed at the Telescope Array (TA) site in Black Rock Mesa, Utah, USA. This is the first detector to successfully use a Fresnel lens based optical system and multi-anode photomultipliers (64 channels per tube, 2304 channels encompassing a 10.6° × 10.6° field of view) for detection of Ultra High Energy Cosmic Rays (UHECR). The telescope is located in front of one of the fluorescence detectors of the TA experiment. Since its installation in 2013, the detector has observed several ultra-high energy cosmic ray events and, in addition, meteors. The limiting magnitude of 5.5 on summed frames (∼ 3 ms) has been established. Measurements of the UV night sky emission in different conditions and moon phases and positions have been completed. The performed observations serve as a proof of concept for the future application of this detector technology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 92

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy