SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0969 9961 OR L773:1095 953X "

Sökning: L773:0969 9961 OR L773:1095 953X

  • Resultat 1-25 av 201
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Andersson, M, et al. (författare)
  • Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease.
  • 1999
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 6:6, s. 461-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Rats with unilateral dopamine-denervating lesions sustained a 3-week treatment with a daily l-DOPA dose that is in the therapeutic range for Parkinson's disease. In most of the treated animals, chronic l-DOPA administration gradually induced abnormal involuntary movements affecting cranial, trunk, and limb muscles on the side of the body contralateral to the lesion. This effect was paralleled by an induction of FosB-like immunoreactive proteins in striatal subregions somatotopically related to the types of movements that had been elicited by l-DOPA. The induced proteins showed both regional and cellular colocalization with prodynorphin mRNA. Intrastriatal infusion of fosB antisense inhibited the development of dyskinetic movements that were related to the striatal subregion targeted and produced a local specific downregulation of prodynorphin mRNA. These data provide compelling evidence of a causal role for striatal fosB induction in the development of l-DOPA-induced dyskinesia in the rat and of a positive regulation of prodynorphin gene expression by FosB-related transcription factors.
  •  
4.
  •  
5.
  • Annelies, Nonneman, et al. (författare)
  • Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis
  • 2018
  • Ingår i: Neurobiology of Disease. - : Academic Press. - 0969-9961 .- 1095-953X. ; 119, s. 26-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1(G93A) mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1(G93A) mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1(G93A) mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.
  •  
6.
  •  
7.
  • Bourdenx, Mathieu, et al. (författare)
  • Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson's disease and L-DOPA-induced dyskinesia
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 62, s. 307-312
  • Tidskriftsartikel (refereegranskat)abstract
    • A role for enhanced peptidergic transmission, either opioidergic or not, has been proposed for the generation of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) on the basis of in situ hybridization studies showing that striatal peptidergic precursor expression consistently correlates with LID severity. Few studies, however, have focused on the actual peptides derived from these precursors. We used mass-spectrometry to study peptide profiles in the putamen and globus pallidus (internalis and externalis) collected from 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine treated macaque monkeys, acutely or chronically treated with L-DOPA. We identified that parkinsonian and dyskinetic states are associated with an abnormal production of proenkephalin-, prodynorphin- and protachykinin-1-derived peptides in both segments of the globus pallidus. Moreover, we report that peptidergic processing is dopamine-state dependent and highly structure-specific, possibly explaining the failure of previous clinical trials attempting to rectify abnormal peptidergic transmission.
  •  
8.
  •  
9.
  • Burguillos Garcia, Miguel, et al. (författare)
  • Apoptosis-inducing factor mediates dopaminergic cell death in response to lps-induced inflammatory stimulus Evidence in Parkinson's disease patients.
  • 2011
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 41, s. 177-188
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that intranigral lipopolysaccharide (LPS) injection, which provokes specific degeneration of DA neurons, induced caspase-3 activation in the rat ventral mesencephalon, which was mostly associated with glial cells. In contrast, nigral DA neurons exhibited AIF nuclear translocation in response to LPS. A significant decrease of the Bcl-2/Bax ratio in nigral tissue after LPS injection was observed. We next developed an in vitro co-culture system with the microglial BV2 and the DA neuronal MN9D murine cell lines. The silencing of caspase-3 or AIF by small interfering RNAs exclusively in the DA MN9D cells demonstrated the key role of AIF in the LPS-induced death of DA cells. In vivo chemical inhibition of caspases and poly(ADP-ribose)polymerase-1, an upstream regulator of AIF release and calpain, proved the central role of the AIF-dependent pathway in LPS-induced nigral DA cell death. We also observed nuclear translocation of AIF in the ventral mesencephalon of Parkinson's disease subjects.
  •  
10.
  •  
11.
  •  
12.
  • Correa, Fernando, et al. (författare)
  • Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: Restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β.
  • 2011
  • Ingår i: Neurobiology of disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 44:1, s. 142-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Histone deacetylase (HDAC) inhibitors have promising neuroprotective and anti-inflammatory properties although the exact mechanisms are unclear. We have earlier showed that factors from lipopolysaccharide (LPS)-activated microglia can down-regulate the astroglial nuclear factor-erythroid 2-related factor 2 (Nrf2)-inducible anti-oxidant defence. Here we have evaluated whether histone modification and activation of GSK3β are involved in these negative effects of microglia. Microglia were cultured for 24h in serum-free culture medium to achieve microglia-conditioned medium from non-activated cells (MCM(0)) or activated with 10ng/mL of LPS to produce MCM(10). Astrocyte-rich cultures treated with MCM(10) showed a time-dependent (0-72h) increase in astroglial HDAC activity that correlated with lower levels of acetylation of histones H3 and H4 and decreased levels of the transcription factor Nrf2 and γ-glutamyl cysteine ligase modulatory subunit (γGCL-M) protein levels. The HDAC inhibitors valproic acid (VPA) and trichostatin-A (TSA) elevated the histone acetylation levels, restored the Nrf2-inducible anti-oxidant defence and conferred protection from oxidative stress-induced (H(2)O(2)) death in astrocyte-rich cultures exposed to MCM(10). Inhibitors of GSK3β (lithium) and p38 MAPK (SB203580) signaling pathways restored the depressed histone acetylation and Nrf2-related transcription whereas an inhibitor of Akt (Ly294002) caused a further decrease in Nrf2-related transcription. In conclusion, the study shows that well tolerated drugs such as VPA and lithium can restore an inflammatory induced depression in the Nrf2-inducible antioxidant defence, possibly via normalised histone acetylation levels.
  •  
13.
  • Crittenden, Jill R., et al. (författare)
  • CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors
  • 2021
  • Ingår i: Neurobiology of Disease. - Maryland Heights, MO, United States : Academic Press. - 0969-9961 .- 1095-953X. ; 158
  • Tidskriftsartikel (refereegranskat)abstract
    • CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntingtons disease and levodopa-induced dyskinesia in Parkinsons disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the selfadministration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGIs therapeutic potential.
  •  
14.
  • Damenti, Martina, et al. (författare)
  • STED and parallelized RESOLFT optical nanoscopy of the tubular endoplasmic reticulum and its mitochondrial contacts in neuronal cells
  • 2021
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • The classic view of organelle cell biology is undergoing a constant revision fueled by the new insights unraveled by fluorescence nanoscopy, which enable sensitive, faster and gentler observation of specific proteins in situ. The endoplasmic reticulum (ER) is one of the most challenging structure to capture due the rapid and constant restructuring of fine sheets and tubules across the full 3D cell volume. Here we apply STED and parallelized 2D and 3D RESOLFT live imaging to uncover the tubular ER organization in the fine processes of neuronal cells with focus on mitochondria-ER contacts, which recently gained medical attention due to their role in neurodegeneration. Multi-color STED nanoscopy enables the simultaneous visualization of small transversal ER tubules crossing and constricting mitochondria all along axons and dendrites. Parallelized RESOLFT allows for dynamic studies of multiple contact sites within seconds and minutes with prolonged time-lapse imaging at similar to 50 nm spatial resolution. When operated in 3D super resolution mode it enables a new isotropic visualization of such contacts extending our understanding of the three-dimensional architecture of these packed structures in axons and dendrites.
  •  
15.
  •  
16.
  •  
17.
  • Domert, Jakob, et al. (författare)
  • Spreading of Amyloid-β Peptides via Neuritic Cell-to-cell Transfer Is Dependent on Insufficient Cellular Clearance
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 65, s. 82-92
  • Tidskriftsartikel (refereegranskat)abstract
    • The spreading of pathology through neuronal pathways is likely to be the cause of the progressive cognitive loss observed in Alzheimer's disease (AD) and other neurodegenerative diseases. We have recently shown the propagation of AD pathology via cell-to-cell transfer of oligomeric amyloid beta (Aβ) residues 1-42 (oAβ1-42) using our donor-acceptor 3-D co-culture model. We now show that different Aβ-isoforms (fluorescently labeled 1-42, 3(pE)-40, 1-40 and 11-42 oligomers) can transfer from one cell to another. Thus, transfer is not restricted to a specific Aβ-isoform. Although different Aβ isoforms can transfer, differences in the capacity to clear and/or degrade these aggregated isoforms result in vast differences in the net amounts ending up in the receiving cells and the net remaining Aβ can cause seeding and pathology in the receiving cells. This insufficient clearance and/or degradation by cells creates sizable intracellular accumulations of the aggregation-prone Aβ1-42 isoform, which further promotes cell-to-cell transfer; thus, oAβ1-42 is a potentially toxic isoform. Furthermore, cell-to-cell transfer is shown to be an early event that is seemingly independent of later appearances of cellular toxicity. This phenomenon could explain how seeds for the AD pathology could pass on to new brain areas and gradually induce AD pathology, even before the first cell starts to deteriorate, and how cell-to-cell transfer can act together with the factors that influence cellular clearance and/or degradation in the development of AD.
  •  
18.
  • Doverhag, Christina, 1979, et al. (författare)
  • Galectin-3 contributes to neonatal hypoxic-ischemic brain injury.
  • 2010
  • Ingår i: Neurobiology of disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 38:1, s. 36-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation induced by hypoxia-ischemia (HI) contributes to the development of injury in the newborn brain. In this study we investigated the role of galectin-3, a novel inflammatory mediator, in the inflammatory response and development of brain injury in a mouse model for neonatal HI. Galectin-3 gene and protein expression was increased after injury and galectin-3 was located in activated microglia/macrophages. Galectin-3 deficient mice (gal3-/-) were protected from injury particularly in hippocampus and striatum. Microglia accumulation was increased in the gal3-/-mice but accompanied by decreased levels of total matrix metalloproteinase (MMP)-9 and nitrotyrosine. The protection and increase in microglial infiltration was more pronounced in male gal3-/-mice. Trophic factors and apoptotic markers did not significantly differ between groups. In conclusion, galectin-3 contributes to neonatal HI injury particularly in male mice. Our results indicate that galectin-3 exerts its effect by modulating the inflammatory response.
  •  
19.
  • Doverhag, Christina, 1979, et al. (författare)
  • Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice
  • 2008
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 31:1, s. 133-44
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Inflammation and reactive oxygen species (ROS) are important in the development of perinatal brain injury. The ROS-generating enzyme NADPH oxidase (Nox2) is present in inflammatory cells and contributes to brain injury in adult animal models. HYPOTHESIS: NADPH oxidase contributes to ROS formation and development of injury in the immature brain and inhibition of NADPH oxidase attenuates perinatal brain injury. METHODS: We used animal models of term hypoxia-ischemia (HI) (P9 mice) as well as ibotenate-induced excitotoxic injury (P5 mice) mimicking features of periventricular leukomalacia in preterm infants. In vitro microglia cell cultures were used to investigate NADPH oxidase-dependent ROS formation. In vivo we determined the impact 1) of HI on NADPH oxidase gene expression 2) of genetic (gp91-phox/Nox2 knock-out) and 3) of pharmacological NADPH oxidase inhibition on HI-induced injury and NMDA receptor-mediated excitotoxic injury, respectively. Endpoints were ROS formation, oxidative stress, apoptosis, inflammation and extent of injury. RESULTS: Hypoxia-ischemia increased NADPH oxidase subunits mRNA expression in total brain tissue in vivo. In vitro ibotenate increased NADPH oxidase-dependent formation of reactive oxygen species in microglia. In vivo the inhibition of NADPH oxidase did not reduce the extent of brain injury in any of the animal models. In contrast, the injury was increased by inhibition of NADPH oxidase and genetic inhibition was associated with an increased level of galectin-3 and IL-1beta. CONCLUSION: NADPH oxidase is upregulated after hypoxia-ischemia and activated microglia cells are a possible source of Nox2-derived ROS. In contrast to findings in adult brain, NADPH oxidase does not significantly contribute to the pathogenesis of perinatal brain injury. Results obtained in adult animals cannot be transferred to newborns and inhibition of NADPH oxidase should not be used in attempts to attenuate injury.
  •  
20.
  • Emilsson, Lina, et al. (författare)
  • Alzheimer’s disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signalling
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 21:3, s. 618-625
  • Tidskriftsartikel (refereegranskat)abstract
    • We combined global and high-resolution strategies to find genes with altered mRNA expression levels in one of the largest collection of brain autopsies from Alzheimer's patients and controls ever studied. Our global analysis involved microarray hybridizations of large pools of samples obtained from 114 individuals, using two independent sets of microarrays. Ten genes selected from the microarray experiments were quantified on each individual separately using real-time RT-PCR. This high-resolution analysis accounted for systematic differences in age, postmortem interval, brain pH, and reference gene expression, and it estimated the effect of disease on mRNA levels, on top of the effect of all other variables. Differential expression was confirmed for eight out of ten genes. Among them, Type B inositol 1,4,5-trisphosphate 3-kinase (ITPKB), and regulator of G protein signaling 4 (RGS4) showed highly altered expression levels in patients (P values < 0.0001). Our results point towards increased inositol triphospate (IP3)-mediated calcium signaling in Alzheimer's disease.
  •  
21.
  • Farias, Fabiana H. G., et al. (författare)
  • A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers
  • 2011
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 42:3, s. 468-474
  • Tidskriftsartikel (refereegranskat)abstract
    • A recessive, adult-onset neuronal ceroid-lipofuscinosis (NCL) occurs in Tibetan terriers. A genome-wide association study restricted this NCL locus to a 1.3 Mb region of canine chromosome 2 which contains canine ATP13A2. NCL-affected dogs were homozygous for a single-base deletion in ATP13A2, predicted to produce a frameshift and premature termination codon. Homozygous truncating mutations in human ATP13A2 have been shown by others to cause Kufor-Rakeb syndrome (KRS), a rare neurodegenerative disease. These findings suggest that KRS is also an NCL, although analysis of KRS brain tissue will be needed to confirm this prediction. Generalized brain atrophy, behavioral changes, and cognitive decline occur in both people and dogs with ATP13A2 mutations: however, other clinical features differ between the species. For example, Tibetan terriers with NCL develop cerebellar ataxia not reported in KRS patients and KRS patients exhibit parkinsonism and pyramidal dysfunction not observed in affected Tibetan terriers. To see if ATP13A2 mutations could be responsible for some cases of human adult-onset NCL (Kufs disease), we resequenced ATP13A2 from 28 Kufs disease patients. None of these patients had ATP13A2 sequence variants likely to be causal for their disease, suggesting that mutations in this gene are not common causes of Kufs disease.
  •  
22.
  • Francardo, Veronica, et al. (författare)
  • Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson's disease.
  • 2011
  • Ingår i: Neurobiology of disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 42:3, s. 327-40
  • Tidskriftsartikel (refereegranskat)abstract
    • 6-Hydroxydopamine (6-OHDA) lesions are being used in the mouse for basic research on Parkinson's disease and L-DOPA-induced dyskinesia. We set out to compare unilateral lesion models produced by intrastriatal or intramesencephalic injections of a fixed 6-OHDA concentration (3.2 μg/μl) in C57BL/6 mice. In the first experiment, toxin injections were performed either at two striatal coordinates (1 or 2 μl per site, termed "striatum(2 × 1 μl)" and "striatum(2 × 2 μl)" models), in the medial forebrain bundle (MFB), or in the substantia nigra pars compacta (SN) (1 μl per site). All the four lesion models produced significant forelimb use asymmetry, but spontaneous turning asymmetry only occurred in the MFB and striatum(2 × 2 μl) models. After the behavioral studies, the induction of phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2) by acute L-DOPA (30 mg/kg) was used as a marker of post-synaptic supersensitivity. Striatal pERK1/2 expression was sparse in the SN and striatum(2 × 1 μl) groups, but pronounced in the striatum(2 × 2 μl) and MFB-lesioned mice. In further experiments, mice with MFB and striatal(2 × 2 μl) lesions were used to compare behavioral and molecular responses to chronic L-DOPA treatment (12 days at 3 and 6 mg/kg/day). Maximally severe abnormal involuntary movements (AIMs) occurred in all MFB-lesioned mice, whereas only 35% of the mice with striatal lesions developed dyskinesia. Striatal tissue levels of dopamine were significantly lower in the dyskinetic animals (both MFB and striatum(2 × 2 μl) groups) in comparison with the non-dyskinetic ones. Noradrenaline levels were significantly reduced only in MFB lesioned animals and did not differ among the dyskinetic and non-dyskinetic cases with striatal lesions. In all groups, the L-DOPA-induced AIM scores correlated closely with the number of cells immunoreactive for tyrosine hydroxylase or FosB/∆FosB in the striatum. In conclusion, among the four lesion procedures examined here, only the MFB and striatum(2 × 2 μl) models yielded a degree of dopamine denervation sufficient to produce spontaneous postural asymmetry and molecular supersensitivity to L-DOPA. Both lesion models are suitable to reproduce L-DOPA-induced dyskinesia, although only MFB lesions yield a pronounced and widespread expression of post-synaptic supersensitivity markers in the striatum.
  •  
23.
  • Gispert, Suzana, et al. (författare)
  • The modulation of Amyotrophic Lateral Sclerosis risk by Ataxin-2 intermediate polyglutamine expansions is a specific effect
  • 2012
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 45:1, s. 356-361
  • Tidskriftsartikel (refereegranskat)abstract
    • Full expansions of the polyglutamine domain (polyQ >= 34) within the polysome-associated protein ataxin-2 (ATXN2) are the cause of a multi-system neurodegenerative disorder, which usually presents as a Spino-Cerebellar Ataxia and is therefore known as SCA2, but may rarely manifest as Levodopa-responsive Parkinson syndrome or as motor neuron disease. Intermediate expansions (27 <= polyQ <= 33) were reported to modify the risk of Amyotrophic Lateral Sclerosis (ALS). We have now tested the reproducibility and the specificity of this observation. In 559 independent ALS patients from Central Europe, the association of ATXN2 expansions (30 <= polyQ <= 35) with ALS was highly significant. The study of 1490 patients with Parkinson's disease (PD) showed an enrichment of ATXN2 alleles 27/28 in a subgroup with familial cases, but the overall risk of sporadic PD was unchanged. No association was found between polyQ expansions in Ataxin-3 (ATXN3) and ALS risk. These data indicate a specific interaction between ATXN2 expansions and the causes of ALS, possibly through altered RNA-processing as a common pathogenic factor. (C) 2011 Elsevier Inc. All rights reserved.
  •  
24.
  •  
25.
  • Götze, Karl, et al. (författare)
  • Plasma neurofilament light chain in memory clinic practice: Evidence from a real-life study.
  • 2023
  • Ingår i: Neurobiology of disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 176
  • Tidskriftsartikel (refereegranskat)abstract
    • To explore the accuracy of plasma neurofilament light chain (NfL) as a biomarker for diagnosis and staging of cognitive impairment, in a large cohort with of previously diagnosed patients in clinical practice.Retrospective, cross-sectional, monocentric study, from a tertiary memory clinic. Patients underwent cerebrospinal fluid core Alzheimer's disease (AD) biomarker evaluation using ELISA or Elecsys methods, and plasma NfL analysis using the single molecule array technology. The patients' biomarker data were examined for associations with: i/cognitive status ii/presence of neurodegenerative disease and iii/diagnostic groups. Associations between core CSF biomarkers and plasma NfL were determined.Participants (N=558, mean age=69.2±8.8, 56.5% women) were diagnosed with AD (n=274, considering dementia and MCI stages), frontotemporal dementia (FTD, n=55), Lewy body disease (LBD, n=40, considering MCI and dementia stages), other neurodegenerative diseases, n=57 (e.g Supranuclear Palsy, Corticobasal syndrome), non-neurodegenerative cognitive impairment (NND, n=79, e.g. vascular lesions, epilepsy or psychiatric disorders) or subjective cognitive impairment (SCI, n=53). Mean plasma NfL (log, pg/mL) levels were higher in neurodegenerative than non-neurodegenerative disorders (1.35±0.2 vs 1.16±0.23, p<0.001), higher in all diagnostic groups than in SCI (1.06±0.23) p<0.001), and associated with the stage of cognitive impairment (p<0.001). The addition of plasma NfL to a clinical model (age, MMSE and APOE ε4 carriership) marginally improved the discrimination of degenerative from non-degenerative disorders in ROC analysis (AUC clinical model: 0.81, 95% CI=[0.77;0.85] AUC clinical model + plasma NfL: AUC=0.83 95% CI=[0.78;0.87], delta Akaike information criterion=-11.7).Plasma NfL could help discrimination between degenerative and non-degenerative cognitive disorders, albeit not better than comprehensive clinical evaluation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 201
Typ av publikation
tidskriftsartikel (193)
forskningsöversikt (8)
Typ av innehåll
refereegranskat (199)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Zetterberg, Henrik, ... (9)
Björklund, Anders (8)
Lundblad, Martin (7)
Blennow, Kaj, 1958 (6)
Zhu, J. (4)
Winblad, B (4)
visa fler...
Olson, L (4)
Hagberg, Henrik, 195 ... (4)
Nordberg, A (3)
Diez, M (3)
Andersen, Peter M. (3)
Möller, Christer (3)
Lannfelt, Lars (3)
Soininen, H (3)
Lindholm, Dan (2)
Bernardi, G. (2)
Link, H (2)
Almkvist, Ove (2)
Vandenberghe, R (2)
Chaudhuri, KR (2)
Batzu, L (2)
Londos, Elisabet (2)
Kivipelto, M (2)
Sandberg, Mats, 1953 (2)
Mix, E (2)
Mariotti, C. (2)
Hillert, J (2)
Olsson, T (2)
Ljunggren, HG (2)
Padovani, A (2)
Savic, I (2)
Wierup, Nils (2)
Lavebratt, C (2)
Tartaglia, MC (2)
Chen, ZG (2)
Spenger, C (2)
Brinkmalm, Gunnar (2)
Ingelsson, Martin (2)
Söderberg, Linda (2)
Rauramaa, T (2)
Leinonen, V (2)
Hiltunen, M (2)
Andersson, M (2)
Smith, C (2)
Hardy, J (2)
Engel, J (2)
Andersson, My (2)
Mattsson, Bengt (2)
Adolfsson, R. (2)
Hokfelt, T (2)
visa färre...
Lärosäte
Lunds universitet (88)
Karolinska Institutet (81)
Göteborgs universitet (18)
Uppsala universitet (14)
Umeå universitet (7)
Linköpings universitet (7)
visa fler...
Kungliga Tekniska Högskolan (5)
Stockholms universitet (3)
Örebro universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (201)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (116)
Naturvetenskap (8)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy