SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1023 5809 OR L773:1607 7946 "

Sökning: L773:1023 5809 OR L773:1607 7946

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amata, E., et al. (författare)
  • Experimental study of nonlinear interaction of plasma flow with charged thin current sheets : 1. Boundary structure and motion
  • 2006
  • Ingår i: Nonlinear processes in geophysics. - 1023-5809 .- 1607-7946. ; 13:4, s. 365-376
  • Tidskriftsartikel (refereegranskat)abstract
    • We study plasma transport at a thin magnetopause (MP), described hereafter as a thin current sheet (TCS), observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF) model in the magnetosheath (MSH) up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a similar to 90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with M-A=3 and beta> 10 (peak value 23). The magnetic field clock angle rotates by 70 degrees across the MP. E-x is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a similar to 300 V electric potential jump across the TCS. The E x B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV), being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006).
  •  
2.
  • Dieckmann, Mark E, 1969- (författare)
  • The formation of relativistic plasma structures and their potential role in the generation of cosmic ray electrons
  • 2008
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 15:6, s. 831-846
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent particle-in-cell (PIC) simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1) Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2) The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. ( 3) A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.
  •  
3.
  • Faranda, Davide, et al. (författare)
  • Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years
  • 2017
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 24:4, s. 713-725
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.
  •  
4.
  • Guio, P., et al. (författare)
  • Phase space vortices in collision-less plasmas
  • 2003
  • Ingår i: Nonlinear processes in geophysics. - 1023-5809 .- 1607-7946. ; 10:1/2, s. 75-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Results on the formation and propagation of electron phase space vortices from laboratory experiments are summarized. The electron phase space vortices were excited in a strongly magnetized Q-machine plasma by applying a pulse to a segment of a waveguide surrounding the plasma. Depending on the temporal variation of the applied pulse, one or more phase space vortices can be excited, and their interaction can be followed in space and time. We were able to demonstrate, for instance, an irreversible coalescence of two such vortices. These results are extended by numerical simulations, showing how electron phase space vortices can also be formed by beam instabilities. Furthermore, a study of ion phase space vortices is performed by numerical simulations. Both codes allow for an externally applied magnetic field in three spatial dimensions. Ion phase space vortices are formed by the nonlinear saturation of the ion-ion two-stream instability, excited by injecting an ion beam at the plasma boundary. By following the evolution of the ion distribution of the velocity perpendicular to the direction of propagation of the injected ion beam, we find a significant ion heating in the direction perpendicular to the magnetic field associated with the ion phase space vortices being formed. The results are relevant, for instance, for the interpretation of observations by instrumented spacecraft in the Earth's ionosphere and magnetosphere.
  •  
5.
  • Hannachi, Abdelwaheb, et al. (författare)
  • 20th century intraseasonal Asian monsoon dynamics viewed from Isomap
  • 2013
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 20:5, s. 725-741
  • Tidskriftsartikel (refereegranskat)abstract
    • The Asian summer monsoon is a high-dimensional and highly nonlinear phenomenon involving considerable moisture transport towards land from the ocean, and is critical for the whole region. We have used daily ECMWF reanalysis (ERA-40) sea-level pressure (SLP) anomalies on the seasonal cycle, over the region 50-145 degrees E, 20 degrees S-35 degrees N, to study the nonlinearity of the Asian monsoon using Isomap. We have focused on the two-dimensional embedding of the SLP anomalies for ease of interpretation. Unlike the unimodality obtained from tests performed in empirical orthogonal function space, the probability density function, within the two-dimensional Isomap space, turns out to be bimodal. But a clustering procedure applied to the SLP data reveals support for three clusters, which are identified using a three-component bivariate Gaussian mixture model. The modes are found to appear similar to active and break phases of the monsoon over South Asia in addition to a third phase, which shows active conditions over the western North Pacific. Using the low-level wind field anomalies, the active phase over South Asia is found to be characterised by a strengthening and an eastward extension of the Somali jet. However during the break phase, the Somali jet is weakened near southern India, while the monsoon trough in northern India also weakens. Interpretation is aided using the APHRODITE gridded land precipitation product for monsoon Asia. The effect of large-scale seasonal mean monsoon and lower boundary forcing, in the form of ENSO, is also investigated and discussed. The outcome here is that ENSO is shown to perturb the intraseasonal regimes, in agreement with conceptual ideas.
  •  
6.
  • Magnusson, Linus, et al. (författare)
  • Initial state perturbations in ensemble forecasting
  • 2008
  • Ingår i: Nonlinear processes in geophysics. - 1023-5809 .- 1607-7946. ; 15:5, s. 751-759
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the chaotic nature of atmospheric dynamics, numerical weather prediction systems are sensitive to errors in the initial conditions. To estimate the forecast uncertainty, forecast centres produce ensemble forecasts based on perturbed initial conditions. How to optimally perturb the initial conditions remains an open question and different methods are in use. One is the singular vector (SV) method, adapted by ECMWF, and another is the breeding vector (BV) method (previously used by NCEP). In this study we compare the two methods with a modified version of breeding vectors in a low-order dynamical system (Lorenz-63). We calculate the Empirical Orthogonal Functions (EOF) of the subspace spanned by the breeding vectors to obtain an orthogonal set of initial perturbations for the model. We will also use Normal Mode perturbations. Evaluating the results, we focus on the fastest growth of a perturbation. The results show a large improvement for the BV-EOF perturbations compared to the non-orthogonalised BV. The BV-EOF technique also shows a larger perturbation growth than the SVs of this system, except for short time-scales. The highest growth rate is found for the second BV-EOF for the long-time scale. The differences between orthogonal and non-orthogonal breeding vectors are also investigated using the ECMWF IFS-model. These results confirm the results from the Loernz-63 model regarding the dependency on orthogonalisation
  •  
7.
  • Markidis, Stefano, et al. (författare)
  • Collisionless magnetic reconnection in a plasmoid chain
  • 2012
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 19:1, s. 145-153
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particlein-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.
  •  
8.
  • Marklund, Göran T., et al. (författare)
  • Characteristics of quasi-static potential structures observed in the auroral return current region by Cluster
  • 2004
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 11:5-6, s. 709-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal and spatial characteristics of intense quasi-static electric fields and associated electric potential structures in the return current region are discussed using Cluster observations at geocentric distances of about 5 Earth radii. Results are presented from four Cluster encounters with such acceleration structures to illustrate common as well as different features of such structures. The electric field structures are characterized by (all values are projected to 100 cm altitude) peak amplitudes of approximate to 1V/m, bipolar or unipolar profiles, perpendicular scale sizes of approximate to 10km, occurrence at auroral plasma boundaries associated with plasma density gradients, downward field-aligned currents of approximate to 10 muA/m(2), and upward electron beams with characteristic energies of a few hundred eV to a few keV. Two events illustrate he temporal evolution of bipolar, diverging electric field strictures, indicative of positive U-shaped potentials increasing in magnitude from less than 1 kV to a few kV on a few 100s time scale. This is also the typical formation time for ionospheric plasma cavities, which are connected to the potential structure and suggested to evolve hand-in-hand with these. In one of these events an energy decay of inverted-V ions was observed in the upward field-aligned current region prior to the acceleration potential increase in the adjacent downward current region, possibly suggesting that a potential redistribution took place between the two current branches. The other two events were characterized by intense unipolar electric fields, indicative of S-shaped potential contours and were encountered at the polar cap boundary. The total observation time for these events was typically 10-20 s, too short for monitoring the evolution of the structure, bui yet of interest for revealing their short term stability. The locations of the two bipolar events at the poleward boundary of the central plasma sheet and of the two unipolar events at the polar cap boundary, suggest that the special profile shape depends on whether plasma populations, dense enough to support upward field-aligned currents and closure of the return current, exist on both sides, or on one side only, of the boundary.
  •  
9.
  • Marklund, Göran T. (författare)
  • On the ionospheric coupling of auroral electric fields
  • 2009
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 16:2, s. 365-372
  • Tidskriftsartikel (refereegranskat)abstract
    • The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC) region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop,Delta Phi(II), as inferred from the characteristic energy of upward ion (electron) beams for the upward (downward) current region and the high-altitude perpendicular (to B) potential, Delta Phi(perpendicular to), as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985). This gives a scale size dependent coupling where structures are coupled (decoupled) above (below) a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.
  •  
10.
  • Müller-Hansen, Finn, et al. (författare)
  • A matrix clustering method to explore patterns of land-cover transitions in satellite-derived maps of the Brazilian Amazon
  • 2017
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 24:1, s. 113-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in land-use systems in tropical regions, including deforestation, are a key challenge for global sustainability because of their huge impacts on green-house gas emissions, local climate and biodiversity. However, the dynamics of land-use and land-cover change in regions of frontier expansion such as the Brazilian Amazon are not yet well understood because of the complex interplay of ecological and socioeconomic drivers. In this paper, we combine Markov chain analysis and complex network methods to identify regimes of land-cover dynamics from land-cover maps (TerraClass) derived from high-resolution (30 m) satellite imagery. We estimate regional transition probabilities between different land-cover types and use clustering analysis and community detection algorithms on similarity networks to explore patterns of dominant land- cover transitions. We find that land- cover transition probabilities in the Brazilian Amazon are heterogeneous in space, and adjacent subregions tend to be assigned to the same clusters. When focusing on transitions from single land- cover types, we uncover patterns that reflect major regional differences in land-cover dynamics. Our method is able to summarize regional patterns and thus complements studies performed at the local scale.
  •  
11.
  • Nocke, T., et al. (författare)
  • Review : visual analytics of climate networks
  • 2015
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 22:5, s. 545-570
  • Forskningsöversikt (refereegranskat)abstract
    • Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
  •  
12.
  • Pereira, Fabio, et al. (författare)
  • Assessment of numerical schemes for solving the advection–diffusion equation on unstructured grids: case study of the Guaíba River, Brazil
  • 2013
  • Ingår i: Nonlinear Processes in Geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 20:6, s. 1113-1125
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • In this work, a first-order upwind and a high-order flux-limiter schemes for solving the advection–diffusion equation on unstructured grids were evaluated. The numerical schemes were implemented as a module of an unstructured two-dimensional depth-averaged circulation model for shallow lakes (IPH-UnTRIM2D), and they were applied to the Guaíba River in Brazil. Their performances were evaluated by comparing mass conservation balance errors for two scenarios of a passive tracer released into the Guaíba River. The circulation model showed good agreement with observed data collected at four water level stations along the Guaíba River, where correlation coefficients achieved values up to 0.93. In addition, volume conservation errors were lower than 1% of the total volume of the Guaíba River. For all scenarios, the higher order flux-limiter scheme has been shown to be less diffusive than a first-order upwind scheme. Accumulated conservation mass balance errors calculated for the flux limiter reached 8%, whereas for a first-order upwind scheme, they were close to 18% over a 15-day period. Although both schemes have presented mass conservation errors, these errors are assumed negligible compared with kinetic processes such as erosion, sedimentation or decay rates.
  •  
13.
  • Rypdal, K., et al. (författare)
  • Non-equilibrium quasi-stationary states in a magnetized plasma
  • 2003
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 10:02-jan, s. 139-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-equilibrium quasi-stationary states resulting from curvature driven interchange instabilities and driftwave instabilities in a low beta, weakly ionized, magnetized plasma are investigated in the context of laboratory experiments in a toroidal configuration. Analytic modelling, numerical simulations and experimental results are discussed with emphasis on identifying the unstable modes and understanding the physics of anomalous particle and energy fluxes and their linkage to self-organized pressure profiles.
  •  
14.
  • Savin, S., et al. (författare)
  • Experimental study of nonlinear interaction of plasma flow with charged thin current sheets : 2. Hall dynamics, mass and momentum transfer
  • 2006
  • Ingår i: Nonlinear processes in geophysics. - 1023-5809 .- 1607-7946. ; 13:4, s. 377-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Proceeding with the analysis of Amata et al. (2005), we suggest that the general feature for the local transport at a thin magnetopause (MP) consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS) is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the nonuniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyro-radii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005), which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over similar to 1.5 R-E from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton cyclotron one, in extended turbulent zones are a promising alternative in place of the usual parallel electric fields invoked in the macro-reconnection scenarios. Further cascading towards electron scales is supposed to be due to unstable parallel electron currents, which neutralize the potential differences, either resulted from the ion-burst interactions or from the inertial drift. The complicated MP shape suggests its systematic velocity departure from the local normal towards the average one, inferring domination for the MP movement of the non-local processes over the small-scale local ones. The measured Poynting vector indicates energy transmission from the MP into the upstream region with the waves triggering impulsive downstream flows, providing an input into the local flow balance and the outward movement of the MP. Equating the transverse electric field inside the MP TCS by the Hall term in the Ohm's law implies a separation of the different plasmas primarily by the Hall current, driven by the respective part of the TCS surface charge. The Hall dynamics of TCS can operate either without or as a part of a macro-reconnection with the magnetic field annihilation.
  •  
15.
  • Scher, Sebastian, et al. (författare)
  • Generalization properties of feed-forward neural networks trained on Lorenz systems
  • 2019
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 26:4, s. 381-399
  • Tidskriftsartikel (refereegranskat)abstract
    • Neural networks are able to approximate chaotic dynamical systems when provided with training data that cover all relevant regions of the system's phase space. However, many practical applications diverge from this idealized scenario. Here, we investigate the ability of feed-forward neural networks to (1) learn the behavior of dynamical systems from incomplete training data and (2) learn the influence of an external forcing on the dynamics. Climate science is a real-world example where these questions may be relevant: it is concerned with a non-stationary chaotic system subject to external forcing and whose behavior is known only through comparatively short data series. Our analysis is performed on the Lorenz63 and Lorenz95 models. We show that for the Lorenz63 system, neural networks trained on data covering only part of the system's phase space struggle to make skillful short-term forecasts in the regions excluded from the training. Additionally, when making long series of consecutive forecasts, the networks struggle to reproduce trajectories exploring regions beyond those seen in the training data, except for cases where only small parts are left out during training. We find this is due to the neural network learning a localized mapping for each region of phase space in the training data rather than a global mapping. This manifests itself in that parts of the networks learn only particular parts of the phase space. In contrast, for the Lorenz95 system the networks succeed in generalizing to new parts of the phase space not seen in the training data. We also find that the networks are able to learn the influence of an external forcing, but only when given relatively large ranges of the forcing in the training. These results point to potential limitations of feed-forward neural networks in generalizing a system's behavior given limited initial information. Much attention must therefore be given to designing appropriate train-test splits for real-world applications.
  •  
16.
  • Stasiewicz, Krzysztof, et al. (författare)
  • Dispersive MHD waves and alfvenons in charge non-neutral plasmas
  • 2008
  • Ingår i: Nonlinear processes in geophysics. - 1023-5809 .- 1607-7946. ; 15:4, s. 681-693
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfven, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300-800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfven waves in space plasmas.
  •  
17.
  • Sun, A. Y., et al. (författare)
  • Global terrestrial water storage connectivity revealed using complex climate network analyses
  • 2015
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 22:4, s. 433-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feed-backs between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1 degrees x 1 degrees grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.
  •  
18.
  • Wiklund, Krister (författare)
  • Wave interactions in a shallow-water model
  • 1998
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 5:3, s. 137-144
  • Tidskriftsartikel (refereegranskat)abstract
    • By using a Hamiltonian method, non-linear three-wave interaction in a class of systems related to the shallow water model is considered and a general coupling coefficient is presented. In the special case where two inertial waves and one Rossby wave interact resonantly, it is found that even a very small shear of the background velocity can be important in the interaction process. The stability of the system is considered by using a pseudoenergy method. Some implications for the dynamics of atmospheric flows are pointed out.
  •  
19.
  • Zhang, Z., et al. (författare)
  • New significance test methods for Fourier analysis of geophysical time series
  • 2011
  • Ingår i: Nonlinear processes in geophysics. - : Copernicus GmbH. - 1023-5809 .- 1607-7946. ; 18:5, s. 643-652
  • Tidskriftsartikel (refereegranskat)abstract
    • When one applies the discrete Fourier transform to analyze finite-length time series, discontinuities at the data boundaries will distort its Fourier power spectrum. In this paper, based on a rigid statistics framework, we present a new significance test method which can extract the intrinsic feature of a geophysical time series very well. We show the difference in significance level compared with traditional Fourier tests by analyzing the Arctic Oscillation (AO) and the Nino3.4 time series. In the AO, we find significant peaks at about 2.8, 4.3, and 5.7 yr periods and in Nino3.4 at about 12 yr period in tests against red noise. These peaks are not significant in traditional tests.
  •  
20.
  • Jin, YH, et al. (författare)
  • Nonlinear multivariable analysis of SOI and local precipitation and temperature
  • 2005
  • Ingår i: Nonlinear Processes in Geophysics. - 1023-5809. ; 12:1, s. 67-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate variability affects important local hydro-meteorological variables like precipitation and temperature. The Southern Oscillation (SO) is an easily quantifiable major driving force that gives impact on regional and local climate. The relationships between SO and local climate variation are, however, characterized by strongly nonlinear processes. Due to this, teleconnections between global-scale hydro-meteorological variables and local climate are not well understood. In this paper, we suggest to study these processes in terms of nonlinear dynamics. Consequently, the nonlinear dynamic relationship between the Southern Oscillation Index (SOI), precipitation, and temperature in Fukuoka, Japan, is investigated using a nonlinear multivariable approach. This approach is based on the joint variation of these variables in the phase space. The joint phasespace variation of SOI, precipitation, and temperature is studied with the primary objective to obtain a better understanding of the dynamical evolution of local hydro-meteorological variables affected by global atmospheric-oceanic phenomena. The results from the analyses display rather clear low-order phase space trajectories when treating the time series individually. However, when plotting phase space trajectories for several time series jointly, complicated higher-order nonlinear relationships emerge between the variables. Consequently, simple data-driven prediction techniques utilizing phase-space characteristics of individual time series may prove successful. On the other hand, since either the time series are too short and/or the phase-space properties are too complex when analysing several variables jointly, it may be difficult to use multivariable statistical prediction techniques for the present investigated variables. In any case, it is essential to further pursue studies regarding links between the SOI and observed local climatic and other geophysical variables even if these links are not fully understood in physical terms.
  •  
21.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy