SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1053 8119 "

Sökning: L773:1053 8119

  • Resultat 1-25 av 474
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petersson, KM, et al. (författare)
  • Instruction-specific brain activations during episodic encoding: a generalized level of processing effect
  • 2003
  • Ingår i: NeuroImage. - 1095-9572 .- 1053-8119. ; 20:3, s. 1795-1810
  • Tidskriftsartikel (refereegranskat)abstract
    • In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.
  •  
2.
  •  
3.
  • Friman, Ola, et al. (författare)
  • Adaptive analysis of fMRI data
  • 2003
  • Ingår i: NeuroImage. - 1053-8119 .- 1095-9572. ; 19:3, s. 837-845
  • Tidskriftsartikel (refereegranskat)abstract
    • This article introduces novel and fundamental improvements of fMRI data analysis. Central is a technique termed constrained canonical correlation analysis, which can be viewed as a natural extension and generalization of the popular general linear model method. The concept of spatial basis filters is presented and shown to be a very successful way of adaptively filtering the fMRI data. A general method for designing suitable hemodynamic response models is also proposed and incorporated into the constrained canonical correlation approach. Results that demonstrate how each of these parts significantly improves the detection of brain activity, with a computation time well within limits for practical use, are provided.
  •  
4.
  • Huang, Chaorui, et al. (författare)
  • Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment.
  • 2003
  • Ingår i: NeuroImage. - 1053-8119. ; 19:3, s. 1137-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to explore the heterogeneity of mild cognitive impairment (MCI) and detect differences in regional cerebral blood flow (rCBF) and cognitive function between progressive mild cognitive impairment (PMCI) and stable mild cognitive impairment (SMCI) in order to identify specific changes useful for early diagnosis of dementia. SPECT was performed in 82 MCI subjects and 20 controls using Tc-99m hexamethylpropyleneamine oxime. Cognitive functions were tested in five domains which included episodic memory, semantic memory, visuospatial function, attention, and general cognitive function. After the initial examination, MCI subjects were clinically followed for an average of 2 years. Twenty-eight subjects progressed to dementia and were defined as PMCI at baseline and 54 subjects remained stable and were defined as SMCI at baseline. The baseline rCBF and cognitive function of PMCI, SMCI, and controls were compared. PMCI had decreased relative rCBF in the parietal lobes and increased relative rCBF in prefrontal cortex compared to SMCI and controls at baseline. The cognitive function of PMCI was more severely impaired compared to SMCI with respect to episodic memory and visuospatial and general cognitive function. Both SPECT and neuropsychological tests had moderate discriminant function between PMCI and SMCI at baseline with the area under the receiver operating characteristic (ROC) curve at 75–77%. The combination of these two methods improved the diagnostic accuracy with the area under the ROC curve at 82–84%. Semantic memory and attention were negatively correlated with left prefrontal relative rCBF among the study population. The results show that the clinical heterogeneity of MCI is reflected in different patterns of psychological and CBF changes. Combined SPECT investigation and neuropsychological testing might predict the future development of dementia in patients with MCI.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Abramian, David, 1992-, et al. (författare)
  • Diffusion-Informed Spatial Smoothing of fMRI Data in White Matter Using Spectral Graph Filters
  • 2021
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 237
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detachability. However, an accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based description of WM that encodes the underlying anisotropy observed across WM, derived from diffusion-weighted MRI data. Based on this representation, and leveraging graph signal processing principles, we design subject-specific spatial filters that adapt to a subject’s unique WM structure at each position in the WM that they are applied at. We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, showcasing its greater sensitivity and specificity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the Human Connectome Project’s 100-unrelated subject dataset, across seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.
  •  
10.
  • Afzali, Maryam, et al. (författare)
  • SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI
  • 2021
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119. ; 237
  • Tidskriftsartikel (refereegranskat)abstract
    • The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and analysis (including the use of multiple so-called ’b-tensor’ encodings and analysing the signal in the frequency-domain) that have not yet been applied in the context of SANDI. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges to robust estimation of sphere size were identified: First, the Rician noise floor in magnitude-reconstructed data biases estimates of sphere properties in a non-uniform fashion. It may cause overestimation or underestimation of the spherical compartment size and density. This can be partly ameliorated by accounting for the noise floor in the estimation routine. Second, even when using the strongest diffusion-encoding gradient strengths available for human MRI, there is an empirical lower bound on the spherical signal fraction and radius that can be detected and estimated robustly. For the experimental setup used here, the lower bound on the sphere signal fraction was approximately 10%. We employed two different ways of establishing the lower bound for spherical radius estimates in white matter. The first, examining power-law relationships between the DW-signal and diffusion weighting in empirical data, yielded a lower bound of 7μm, while the second, pure Monte Carlo simulations, yielded a lower limit of 3μm and in this low radii domain, there is little differentiation in signal attenuation. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, e.g., axons and cellular projections, then trying to disentangle two diffusion-time-dependencies using one experimental parameter (i.e., change in frequency-content of the encoding waveform) makes spherical radii estimates particularly challenging. We conclude that due to the aforementioned challenges spherical radii estimates may be biased when the corresponding sphere signal fraction is low, which must be considered.
  •  
11.
  •  
12.
  • Ahmadi, Khazar, et al. (författare)
  • Triple visual hemifield maps in a case of optic chiasm hypoplasia
  • 2020
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119. ; 215
  • Tidskriftsartikel (refereegranskat)abstract
    • In humans, each hemisphere comprises an overlay of two visuotopic maps of the contralateral visual field, one from each eye. Is the capacity of the visual cortex limited to these two maps or are plastic mechanisms available to host more maps? We determined the cortical organization of the visual field maps in a rare individual with chiasma hypoplasia, where visual cortex plasticity is challenged to accommodate three hemifield maps. Using high-resolution fMRI at 7T and diffusion-weighted MRI at 3T, we found three hemiretinal inputs, instead of the normal two, to converge onto the left hemisphere. fMRI-based population receptive field mapping of the left V1–V3 at 3T revealed three superimposed hemifield representations in the left visual cortex, i.e. two representations of opposing visual hemifields from the left eye and one right hemifield representation from the right eye. We conclude that developmental plasticity including the re-wiring of local intra- and cortico-cortical connections is pivotal to support the coexistence and functioning of three hemifield maps within one hemisphere.
  •  
13.
  • Ahs, Fredrik, et al. (författare)
  • High-frequency heart rate variability and cortico-striatal activity in men and women with social phobia
  • 2009
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 47:3, s. 815-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying brain systems that regulate or modulate autonomic nervous system functions may identify pathways through which psychosocial factors can influence health and disease. Reduced high-frequency heart rate variability (HF-HRV) characterizes anxiety disordered patients and is predictive of adverse myocardial events. Sex differences in the prevalence of anxiety disorders and cardiac diseases implicate the possibility of sex specific neural regulation of HF-HRV. We investigated the correlation between HF-HRV and regional cerebral blood flow (rCBF) in 28 subjects (15 women) with social phobia undergoing a stressful public speaking task. Regional CBF was measured with [(15)O] water positron emission tomography. Stress induced rCBF correlated positively with HF-HRV in the right supra genual anterior cingulate cortex Brodmann's area (BA) 32, the right head of the caudate nucleus and bilaterally in the medial prefrontal cortex (BA10), extending into the dorsolateral prefrontal cortex (BA46) in the left hemisphere. Men showed larger positive co-variation in the caudate than women. These findings underscore the importance of the emotional division of the anterior cingulate cortex, the prefrontal cortex and the striatum in cardiovagal activity. The study replicates and extends results from published functional neuroimaging studies on cardioregulatory or modulatory areas in healthy subjects to men and women with social phobia. Moreover, caudate functions, possibly related to dopaminergic neurotransmission, have sexually dimorphic effects on vagal modulation of the heart.
  •  
14.
  •  
15.
  • Akram, Harith, et al. (författare)
  • Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease
  • 2017
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 158, s. 332-345
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy.Methods: High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy.Results: All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H-2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -3(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity.Interpretation: These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Andersen, L. M., et al. (författare)
  • On-scalp MEG SQUIDs are sensitive to early somatosensory activity unseen by conventional MEG
  • 2020
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 221
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetoencephalography (MEG) has a unique capacity to resolve the spatio-temporal development of brain activity from non-invasive measurements. Conventional MEG, however, relies on sensors that sample from a distance (20–40 mm) to the head due to thermal insulation requirements (the MEG sensors function at 4 K in a helmet). A gain in signal strength and spatial resolution may be achieved if sensors are moved closer to the head. Here, we report a study comparing measurements from a seven-channel on-scalp SQUID MEG system to those from a conventional (in-helmet) SQUID MEG system. We compared the spatio-temporal resolution between on-scalp and conventional MEG by comparing the discrimination accuracy for neural activity patterns resulting from stimulating five different phalanges of the right hand. Because of proximity and sensor density differences between on-scalp and conventional MEG, we hypothesized that on-scalp MEG would allow for a more high-resolved assessment of these activity patterns, and therefore also a better classification performance in discriminating between neural activations from the different phalanges. We observed that on-scalp MEG provided better classification performance during an early post-stimulus period (10–20 ms). This corresponded to the electroencephalographic (EEG) component P16/N16 and was an unexpected observation as this component is usually not observed in conventional MEG. This finding shows that on-scalp MEG enables a richer registration of the cortical signal, indicating a sensitivity to what are potentially sources in the thalamo-cortical radiation. We had originally expected that on-scalp MEG would provide better classification accuracy based on activity in proximity to the P60m component compared to conventional MEG. This component indeed allowed for the best classification performance for both MEG systems (60–75%, chance 50%). However, we did not find that on-scalp MEG allowed for better classification than conventional MEG at this latency. We suggest that this absence of differences is due to the limited sensor coverage in the recording, in combination with our strategy for positioning the on-scalp MEG sensors. We show how the current sensor coverage may have limited our chances to register the necessary between-phalange source field dissimilarities for fair hypothesis testing, an approach we otherwise believe to be useful for future benchmarking measurements. © 2020 The Authors
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 474
Typ av publikation
tidskriftsartikel (391)
konferensbidrag (78)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (388)
övrigt vetenskapligt/konstnärligt (86)
Författare/redaktör
Halldin, C (79)
Farde, L (50)
Gulyas, B (43)
Varrone, A (26)
Petersson, KM (23)
Ingvar, M (17)
visa fler...
Bäckman, Lars (17)
Fransson, P. (15)
Szczepankiewicz, Fil ... (14)
Pike, VW (14)
Nyberg, Lars (13)
Nilsson, Markus (13)
Farde, Lars (12)
Savic, I (11)
Karlsson, P (11)
Cselenyi, Z (11)
Oostenveld, R (11)
Salami, Alireza (11)
Cervenka, Simon (10)
Seneca, N (10)
Takano, A (10)
Olsson, H. (9)
Halldin, Christer (9)
Westin, Carl-Fredrik (9)
Kalpouzos, Grégoria (9)
Andersson, J (8)
van Westen, Danielle (8)
Finnema, SJ (8)
Radua, J (7)
Helms, Gunther (7)
Schou, M (7)
Rieckmann, Anna (7)
Mårtensson, Johan (7)
Ullen, F (7)
Syvänen, Stina (7)
Brehmer, Yvonne (7)
Agartz, I (6)
Wahlund, Lars-Olof (6)
Wahlund, LO (6)
Ito, H. (6)
Weiskopf, Nikolaus (6)
Andersson, Micael (6)
Knutsson, Hans (6)
Özarslan, Evren (6)
Hall, H (6)
Varnas, K (6)
Ashburner, John (6)
Lundqvist, D (6)
Finnema, S (6)
Toth, M (6)
visa färre...
Lärosäte
Karolinska Institutet (328)
Lunds universitet (60)
Uppsala universitet (51)
Stockholms universitet (51)
Umeå universitet (43)
Linköpings universitet (37)
visa fler...
Göteborgs universitet (24)
Kungliga Tekniska Högskolan (6)
Örebro universitet (6)
Högskolan Kristianstad (4)
Högskolan i Skövde (4)
Chalmers tekniska högskola (4)
Mittuniversitetet (2)
Gymnastik- och idrottshögskolan (2)
Mälardalens universitet (1)
Handelshögskolan i Stockholm (1)
RISE (1)
visa färre...
Språk
Engelska (474)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (171)
Samhällsvetenskap (43)
Teknik (28)
Naturvetenskap (26)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy