SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1086 9379 OR L773:1945 5100 "

Sökning: L773:1086 9379 OR L773:1945 5100

  • Resultat 1-25 av 81
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bridges, J. C., et al. (författare)
  • Petrographic classification of middle ordovician fossil meteorites from Sweden
  • 2007
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 42:10, s. 1781-1789
  • Tidskriftsartikel (refereegranskat)abstract
    • The maximum diameter of chromite (FeCr2O4) grains within L chondrites reflects the petrographic type of the sample. On the basis of our measurements of nine recent L chondrites, L3 chromite D-mac = 34-50 mu m, L4 = 87-150 mu m, L5 = 76-158 mu m, and L6 = 253-638 mu m. This variation reflects the crystallization of the chromite grains during parent body thermal metamorphism.We use this calibration to classify six fossil meteorites from the Middle Ordovician in Sweden as type 3 (or 4) to 6. The high flux of L chondrites at 470 Ma contained a range of petrographic types and may have had a higher proportion of lower petrographic type meteorites than are found in recent L chondrite falls. The fossil meteorites have in places preserved recognizable chondrule textures, including porphyritic olivine, barred olivine, and radiating pyroxene. A large relict clast and fusion crust have also been tentatively identified in one fossil meteorite. Apart from chromite, all of the original meteorite minerals have been replaced by carbonate (and sheet silicate and sulfate) during diagenesis within the limestone host. The preservation of chondrule definition has allowed us to measure the mean diameters of relict chondrules. The range (0.4-0.6 mm) is consistent with measurements made in the same way on recent L chondrites.
  •  
2.
  • Frisk, Åsa M., et al. (författare)
  • Facies distribution of post- impact sediments in the Ordovician Lockne and Tvären impact craters : Indications for unique impact-generated environments
  • 2007
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 42:11, s. 1971-1984
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lockne and Tvaren craters formed in the Late Ordovician Baltoscandian epicontinental sea. Both craters demonstrate similarities concerning near-synchronous age, target seabed, and succeeding resurge deposits; however, the water depths at the impact sites and the sizes of the craters were not alike. The post-impact sedimentary succession of carbonates, i.e., the Dalby Limestone, deposited on top of the resurge sediments in the two craters, is nevertheless similar. At least three main facies of the Dalby Limestone were established in the Lockne crater, depending on sea-floor topography, location with respect to the crater, and local water currents. The dominating nodular argillaceous facies, showing low values of inorganic carbon (IC), was distributed foremost in the deeper and quiet areas of the crater floor and depressions. At the crater rim, consisting of crushed crystalline basement ejecta, a rim facies with a reef-like fauna was established, most certainly due to topographical highs and substrate-derived nutrients. Between these facies are occurrences of a relatively thick-bedded calcilutite rich in cephalopods (cephalopod facies). In Tvaren, the lower part of the succession consists of an analogous argillaceous facies, also showing similar low IC values as in Lockne, followed by calcareous mudstones with an increase of IC. Occasionally biocalcarenites with a distinctive fauna occur in the Tvaren succession, probably originating as detritus from a facies developed on the rim. They are evident as peaks in IC and lows in organic carbon (Corg). The fauna in these biocalcarenites corresponds very well with those of erratic boulders derived from Tvaren; moreover, they correspond to the rim facies of Lockne except for the inclusion of photosynthesizing algae, indicating shallower water at Tvaren than Lockne. Consequently, we suggest equivalent distribution patterns for the carbonates of the Dalby Limestone in Lockne and Tvaren.
  •  
3.
  • Ormo, Jens, et al. (författare)
  • Magnetometer survey of the proposed Sirente meteorite crater field, central Italy : Evidence for uplifted crater rims and buried meteorites
  • 2007
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 42:2, s. 211-222
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sirente crater field consists of a 120 in wide, rimmed main depression flanked to the northwest by about 30 smaller depressions. It has been dated to the first centuries A.D. An impact origin is suggested, but not confirmed. The small size combined with the properties of the target material (carbonate mud) would neither allow shock features diagnostic of impact, nor projectile vaporization. Consequently, a meteoritic component in the sediments would be very localized. At impacts of this size the projectile most likely is an iron meteorite. Any iron meteorites on the ground surface would, in Iron Age Europe, have been removed shortly after the event. However, if the depressions are of impact origin they should contain meteorites at great depth in analogy with known craters. The magnetic properties of iron meteorites differ distinctly from the very low magnetic sediments and sedimentary rocks of the Sirente area. We have used a proton precession magnetometer/gradiometer to produce magnetic anomaly maps over four of the smaller depressions (similar to 8 in diameter), as well as two crossing profiles over a fifth depression (similar to 22 in diameter). All show distinct magnetic anomalies of about 20 nT, the larger depression up to 100 nT. Magnetic modeling shows a best fit for structures with upturned strata below their rims, excluding a karstic origin but supporting an explosive formation. The 100 nT anomaly can only be explained by highly-magnetic objects at a few meters depth. All together, the magnetic data provides a strong indication for an impact origin of the crater field.
  •  
4.
  • Reimold, W U, et al. (författare)
  • Laser argon dating of melt breccias from the Siljan impact structure, Sweden : Implications for a possible relationship to Late Devonian extinction events
  • 2005
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 40:4, s. 591-607
  • Tidskriftsartikel (refereegranskat)abstract
    • In earlier studies, the 65-75 km diameter Si1jan impact structure in Sweden has been linked to the Late Devonian mass extinction event. The Siljan impact event has previously been dated by K-Ar and Ar-Ar chronology at 342-368 Ma, with the commonly quoted age being 362.7 +/- 2.2 Ma (2 sigma, recalculated using currently accepted decay constants). Until recently, the accepted age for the Frasnian/Famennian boundary and associated extinction event was 364 Ma, which is within error limits of this earlier Si1jan age. Here we report new Ar-Ar ages extracted by laser spot and laser step heating techniques for several melt breccia samples from Si1jan (interpreted to be impact melt breccia). The analytical results show some scatter, which is greater in samples with more extensive alteration; these samples generally yield younger ages. The two samples with the least alteration yield the most reproducible weighted mean ages: one yielded a laser spot age of 377.2 +/- 2.5 Ma (95% confidence limits) and the other yielded both a laser spot age of 376.1 +/- 2.8 Ma (95% confidence limits) and a laser stepped heating plateau age over 70.6% (39)Ar release of 377.5 +/- 2.4 Ma (2 sigma). Our conservative estimate for the age of Siljan is 377 2 Ma (95% confidence limits), which is significantly different from both the previously accepted age for the Frasnian/Famennian (F/F) boundary and the previously quoted age of Siljan. However, the age of the F/F boundary has recently been revised to 374.5 +/- 2.6 Ma by the International Commission for Stratigraphy, which is, within error, the same as our new age. However, the currently available age data are not proof that there was a connection between the Si1jan impact event and the F/F boundary extinction. This new result highlights the dual problems of dating meteorite impacts where fine-grained melt rocks are often all that can be isotopically dated, and constraining the absolute age of biostratigraphic boundaries, which can only be constrained by age extrapolation. Further work is required to develop and improve the terrestrial impact age record and test whether or not the terrestrial impact flux increased significantly at certain times, perhaps resulting in major extinction events in Earth's biostratigraphic record.
  •  
5.
  • Ormoe, Jens, et al. (författare)
  • Sedimentological analysis of resurge deposits at the Lockne and Tvären craters : Clues to flow dynamics
  • 2007
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 42:11, s. 1929-1943
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lockne and Tvaren craters formed about 455 million years ago in an epicontinental sea where seawater and mainly limestones covered a crystalline basement. The target water depth for Tvaren (apparent basement crater diameter D = 2 km) was probably not over 150 in, and for Lockne (D = 7.5 km) recent best-fit numerical simulations suggest the target water depth of 500-700 m. Lockne has crystalline ejecta that partly cover an outer crater (14 km diameter) apparent in the target sediments. Tvaren is eroded with only the crater infill preserved. We have line-logged cores through the resurge deposits within the craters in order to analyze the resurge flow. The focus was clast lithology, frequencies, and size sorting. We divide the resurge into ""resurge proper,"" with water and debris shooting into the crater and ultimately rising into a central water plume, ""anti-resurge,"" with flow outward from the collapsing plume, and ""oscillating resurge"" (not covered by the line-logging due to methodological reasons), with decreasing flow in diverse directions. At Lockne, the deposit of the resurge proper is coarse and moderately sorted, whereas the anti-resurge deposit is fining upwards and better sorted. The Tvaren crater has a smoothly fining-up section deposited by the resurge proper and may lack anti-resurge deposits. At Lockne, the content of crystalline relative to limestone clasts generally decreases upwards, which is the opposite of Tvaren. This may be a consequence of factors such as crater size (i.e., complex versus simple) and the relative target water depth. The mean grain size (i.e., the mean-phi value per meter, (p) and standard deviation, i.e., size sorting (sigma) for both craters, can be expressed by the equation sigma = 0.60 phi - 1.25.
  •  
6.
  • Alexander, Louise, et al. (författare)
  • An analysis of Apollo lunar soil samples 12070,889, 12030,187, and 12070,891: Basaltic diversity at the Apollo 12 landing site and implications for classification of small-sized lunar samples
  • 2016
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 51, s. 1654-1677
  • Tidskriftsartikel (refereegranskat)abstract
    • Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1–2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine-grained (grain size <0.3 mm), a “paired samples t-test” can provide a statistical comparison between a particular sample and known lunar basalts. Of the fragments analyzed here, three are found to belong to each of the previously identified olivine and ilmenite basalt suites, four to the pigeonite basalt suite, one is an olivine cumulate, and two could not be categorized because of their coarse grain sizes and lack of appropriate mineral phases. Our approach introduces methods that can be used to investigate small sample sizes (i.e., fines) from future sample return missions to investigate lava flow diversity and petrological significance.
  •  
7.
  • Alwmark, Carl, et al. (författare)
  • Shocked quartz grains in the early Cambrian Vakkejokk Breccia, Sweden—Evidence of a marine impact
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 54:3, s. 609-620
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present a study of the abundance and orientation of planar deformation features (PDFs) in the Vakkejokk Breccia, a proposed lower Cambrian impact ejecta layer in the North-Swedish Caledonides. The presence of PDFs is widely accepted as evidence for shock metamorphism associated with cosmic impact events and their presence confirms that the Vakkejokk Breccia is indeed the result of an impact. The breccia has previously been divided into four lithological subunits (from bottom to top), viz. lower polymict breccia (LPB), graded polymict breccia (GPB), top sandstone (TS), and top conglomerate (TC). Here we show that the LPB contains no shock metamorphic features, indicating that the material derives from just outside of the crater and represents low-shock semi-autochthonous bombarded strata. In the overlying, more fine-grained GPB and TS, quartz grains with PDFs are relatively abundant (2–5% of the grain population), and with higher shock levels in the upper parts, suggesting that they have formed by reworking of more distal ejecta by resurge of water toward the crater in a marine setting. The absence of shocked quartz grains in the TC indicates that this unit represents later slumps associated with weathering and erosion of the protruding crater rim. Sparse shocked quartz grains (<0.2%) were also found in sandstone beds occurring at the same stratigraphic level as the Vakkejokk Breccia 15–20 km from the inferred crater site. It is currently unresolved whether the sandstone at these distal sites is related to the impact or just contains rare reworked quartz grains with PDFs.
  •  
8.
  •  
9.
  • Beaty, D.W, et al. (författare)
  • The potential science and engineering value of samples delivered to Earth by Mars sample return : International MSR Objectives and Samples Team (iMOST)
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:S1, s. 3-152
  • Tidskriftsartikel (refereegranskat)abstract
    • Executive Summary: Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned Martian samples would impact future Martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others. Summary of Objectives and Sub-Objectives for MSR Identified by iMOST: Objective 1 Interpret the primary geologic processes and history that formed the Martian geologic record, with an emphasis on the role of water. Intent To investigate the geologic environment(s) represented at the Mars 2020 landing site, provide definitive geologic context for collected samples, and detail any characteristics that might relate to past biologic processesThis objective is divided into five sub-objectives that would apply at different landing sites. 1.1 Characterize the essential stratigraphic, sedimentologic, and facies variations of a sequence of Martian sedimentary rocks. Intent To understand the preserved Martian sedimentary record. Samples A suite of sedimentary rocks that span the range of variation. Importance Basic inputs into the history of water, climate change, and the possibility of life 1.2 Understand an ancient Martian hydrothermal system through study of its mineralization products and morphological expression. Intent To evaluate at least one potentially life-bearing “habitable” environment Samples A suite of rocks formed and/or altered by hydrothermal fluids. Importance Identification of a potentially habitable geochemical environment with high preservation potential. 1.3 Understand the rocks and minerals representative of a deep subsurface groundwater environment. Intent To evaluate definitively the role of water in the subsurface. Samples Suites of rocks/veins representing water/rock interaction in the subsurface. Importance May constitute the longest-lived habitable environments and a key to the hydrologic cycle. 1.4 Understand water/rock/atmosphere interactions at the Martian surface and how they have changed with time. Intent To constrain time-variable factors necessary to preserve records of microbial life. Samples Regolith, paleosols, and evaporites. Importance Subaerial near-surface processes could support and preserve microbial life. 1.5 Determine the petrogenesis of Martian igneous rocks in time and space. Intent To provide definitive characterization of igneous rocks on Mars. Samples Diverse suites of ancient igneous rocks. Importance Thermochemical record of the planet and nature of the interior. Objective 2 Assess and interpret the potential biological history of Mars, including assaying returned samples for the evidence of life. Intent To investigate the nature and extent of Martian habitability, the conditions and processes that supported or challenged life, how different environments might have influenced the preservation of biosignatures and created nonbiological “mimics,” and to look for biosignatures of past or present life.This objective has three sub-objectives: 2.1 Assess and characterize carbon, including possible organic and pre-biotic chemistry. Samples All samples collected as part of Objective 1. Importance Any biologic molecular scaffolding on Mars would likely be carbon-based. 2.2 Assay for the presence of biosignatures of past life at sites that hosted habitable environments and could have preserved any biosignatures. Samples All samples collected as part of Objective 1. Importance Provides the means of discovering ancient life. 2.3 Assess the possibility that any life forms detected are alive, or were recently alive. Samples All samples collected as part of Objective 1. Importance Planetary protection, and arguably the most important scientific discovery possible. Objective 3 Quantitatively determine the evolutionary timeline of Mars. Intent To provide a radioisotope-based time scale for major events, including magmatic, tectonic, fluvial, and impact events, and the formation of major sedimentary deposits and geomorphological features. Samples Ancient igneous rocks that bound critical stratigraphic intervals or correlate with crater-dated surfaces. Importance Quantification of Martian geologic history. Objective 4 Constrain the inventory of Martian volatiles as a function of geologic time and determine the ways in which these volatiles have interacted with Mars as a geologic system. Intent To recognize and quantify the major roles that volatiles (in the atmosphere and in the hydrosphere) play in Martian geologic and possibly biologic evolution. Samples Current atmospheric gas, ancient atmospheric gas trapped in older rocks, and minerals that equilibrated with the ancient atmosphere. Importance Key to understanding climate and environmental evolution. Objective 5 Reconstruct the processes that have affected the origin and modification of the interior, including the crust, mantle, core and the evolution of the Martian dynamo. Intent To quantify processes that have shaped the planet's crust and underlying structure, including planetary differentiation, core segregation and state of the magnetic dynamo, and cratering. Samples Igneous, potentially magnetized rocks (both igneous and sedimentary) and impact-generated samples. Importance Elucidate fundamental processes for comparative planetology. Objective 6 Understand and quantify the potential Martian environmental hazards to future human exploration and the terrestrial biosphere. Intent To define and mitigate an array of health risks related to the Martian environment associated with the potential future human exploration of Mars. Samples Fine-grained dust and regolith samples. Importance Key input to planetary protection planning and astronaut health. Objective 7 Evaluate the type and distribution of in-situ resources to support potential future Mars exploration. Intent To quantify the potential for obtaining Martian resources, including use of Martian materials as a source of water for human consumption, fuel production, building fabrication, and agriculture. Samples Regolith. Importance Production of simulants that will facilitate long-term human presence on Mars. Summary of iMOST Findings: Several specific findings were identified during the iMOST study. While they are not explicit recommendations, we suggest that they should serve as guidelines for future decision making regarding planning of potential future MSR missions. The samples to be collected by the Mars 2020 (M-2020) rover will be of sufficient size and quality to address and solve a wide variety of scientific questions. Samples, by definition, are a statistical representation of a larger entity. Our ability to interpret the source geologic units and processes by studying sample sub sets is highly dependent on the quality of the sample context. In the case of the M-2020 samples, the context is expected to be excellent, and at multiple scales. (A) Regional and planetary context will be established by the on-going work of the multi-agency fleet of Mars orbiters. (B) Local context will be established at field area- to outcrop- to hand sample- to hand lens scale using the instruments carried by M-2020. A significant fraction of the value of the MSR sample collection would come from its organization into sample suites, which are small groupings of samples designed to represent key aspects of geologic or geochemical variation. If the Mars 2020 rover acquires a scientifically well-chosen set of samples, with sufficient geological diversity, and if those samples were returned to Earth, then major progress can be expected on all seven of the objectives proposed in this study, regardless of the final choice of landing site. The specifics of which parts of Objective 1 could be achieved would be different at each of the final three candidate landing sites, but some combination of critically important progress could be made at any of them. An aspect of the search for evidence of life is that we do not know in advance how evidence for Martian life would be preserved in the geologic record. In order for the returned samples to be most useful for both understanding geologic processes (Objective 1) and the search for life (Objective 2), the sample collection should contain BOTH typical and unusual samples from the rock units explored. This consideration should be incorporated into sample selection and the design of the suites. The retrieval missions of a MSR campaign should (1) minimize stray magnetic fields to which the samples would be exposed and carry a magnetic witness plate to record exposure, (2) collect and return atmospheric gas sample(s), and (3) collect additional dust and/or regolith sample mass if possible.
  •  
10.
  •  
11.
  • Boschi, Samuele, et al. (författare)
  • The micrometeorite flux to Earth during the earliest Paleogene reconstructed in the Bottaccione section (Umbrian Apennines), Italy
  • 2020
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 55:7, s. 1615-1628
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on sediment-dispersed extraterrestrial spinel grains in the Bottaccione limestone section in Italy, we reconstructed the micrometeorite flux to Earth during the early Paleocene. From a total of 843 kg of limestone, 86 extraterrestrial spinel grains (12 grains > 63 μm, and 74 in the 32–63 μm fraction) have been recovered. Our results indicate that the micrometeorite flux was not elevated during the early Paleocene. Ordinary chondrites dominated over achondritic meteorites similar to the recent flux, but H chondrites dominated over L and LL chondrites (69%, 22%, and 9%, respectively). This H-chondrite dominance is similar to that recorded within an enigmatic 3He anomaly (70, 27, and 3%) in the Turonian, but different from just before this 3He anomaly and in the early Cretaceous, where ratios are similar to the recent flux (~45%, 45%, and 10%). The K-Ar isotopic ages of recently fallen H chondrites indicate a small impact event on the H-chondrite parent body ~50 to 100 Ma ago. We tentatively suggest that this event is recorded by the Turonian 3He anomaly, resulting in an H-chondrite dominance up to the Paleocene. Our sample spanning the 20 cm above the Cretaceous–Paleogene (K–Pg) boundary did not yield any spinel grains related to the K–Pg boundary impactor.
  •  
12.
  • Brown, P.G., et al. (författare)
  • The Hamburg meteorite fall : Fireball trajectory, orbit, and dynamics
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:9, s. 2027-2045
  • Tidskriftsartikel (refereegranskat)abstract
    • The Hamburg (H4) meteorite fell on 17 January 2018 at 01:08 UT approximately 10 km north of Ann Arbor, Michigan. More than two dozen fragments totaling under 1 kg were recovered, primarily from frozen lake surfaces. The fireball initial velocity was 15.83 ± 0.05 km s−1, based on four independent records showing the fireball above 50 km altitude. The radiant had a zenith angle of 66.14 ± 0.29° and an azimuth of 121.56 ± 1.2°. The resulting low inclination (<1°) Apollo‐type orbit has a large aphelion distance and Tisserand value relative to Jupiter (Tj) of ~3. Two major flares dominate the energy deposition profile, centered at 24.1 and 21.7 km altitude, respectively, under dynamic pressures of 5–7 MPa. The Geostationary Lightning Mapper on the Geostationary Operational Environmental Satellite‐16 also detected the two main flares and their relative timing and peak flux agree with the video‐derived brightness profile. Our preferred total energy for the Hamburg fireball is 2–7 T TNT (8.4–28 × 109 J), which corresponds to a likely initial mass in the range of 60–225 kg or diameter between 0.3 and 0.5 m. Based on the model of Granvik et al. (2018), the meteorite originated in an escape route from the mid to outer asteroid belt. Hamburg is the 14th known H chondrite with an instrumentally derived preatmospheric orbit, half of which have small (<5°) inclinations making connection with (6) Hebe problematic. A definitive parent body consistent with all 14 known H chondrite orbits remains elusive.
  •  
13.
  • Caplan, Caroline E., et al. (författare)
  • The classification of relict extraterrestrial chrome spinels using STEM techniques on silicate inclusions
  • 2021
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 56:4, s. 700-722
  • Tidskriftsartikel (refereegranskat)abstract
    • Remnant extraterrestrial chrome spinels from terrestrial sediments provide information on how the mixture of meteoritic materials falling to Earth has changed over Earth’s history. The parent meteorite type of each grain can be identified by characteristic elemental and oxygen-isotope abundances. Some meteorite types can be difficult to classify because their chrome-spinel compositional ranges overlap. Silicate inclusions within chrome spinels of modern ordinary chondrites have been shown to have discriminating power among meteorite subclasses. We employed energy-dispersive X-ray spectroscopy in a scanning electron microscope (SEM) and in a (scanning) transmission electron microscope (S/TEM) to investigate inclusions in chrome-spinel grains from Ordovician and Jurassic sediments. Unaltered Ordovician inclusions allowed us to establish the size limits for reliable SEM analysis of inclusions. The Jurassic grains were more altered, but the use of STEM techniques on small inclusions (<3 μm diameter at their polished surfaces) allowed us to determine chemical compositions and mineral structures of inclusions in three chrome spinels. The parent meteorite type was determined for one Jurassic grain based on its inclusion compositions. Our study confirms that silicate inclusions can be used to classify parent meteorite types of chrome-spinel grains, but the size of the inclusions and the complex effects of terrestrial alteration must be taken into account. During our study, we also found some interesting exsolution phenomena in the host chrome-spinel grains.
  •  
14.
  • Curran, N. M., et al. (författare)
  • The early geological history of the Moon inferred from ancient lunar meteorite Miller Range 13317
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons, Ltd (10.1111). - 1086-9379 .- 1945-5100. ; 54:7, s. 1401-1430
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Miller Range (MIL) 13317 is a heterogeneous basalt-bearing lunar regolith breccia that provides insights into the early magmatic history of the Moon. MIL 13317 is formed from a mixture of material with clasts having an affinity to Apollo ferroan anorthosites and basaltic volcanic rocks. Noble gas data indicate that MIL 13317 was consolidated into a breccia between 2610 ± 780 Ma and 1570 ± 470 Ma where it experienced a complex near-surface irradiation history for ~835 ± 84 Myr, at an average depth of ~30 cm. The fusion crust has an intermediate composition (Al2O3 15.9 wt%; FeO 12.3 wt%) with an added incompatible trace element (Th 5.4 ppm) chemical component. Taking the fusion crust to be indicative of the bulk sample composition, this implies that MIL 13317 originated from a regolith that is associated with a mare-highland boundary that is KREEP-rich (i.e., K, rare earth elements, and P). A comparison of bulk chemical data from MIL 13317 with remote sensing data from the Lunar Prospector orbiter suggests that MIL 13317 likely originated from the northwest region of Oceanus Procellarum, east of Mare Nubium, or at the eastern edge of Mare Frigoris. All these potential source areas are on the near side of the Moon, indicating a close association with the Procellarum KREEP Terrane. Basalt clasts in MIL 13317 are from a very low-Ti to low-Ti (between 0.14 and 0.32 wt%) source region. The similar mineral fractionation trends of the different basalt clasts in the sample suggest they are comagmatic in origin. Zircon-bearing phases and Ca-phosphate grains in basalt clasts and matrix grains yield 207Pb/206Pb ages between 4344 ± 4 and 4333 ± 5 Ma. These ancient 207Pb/206Pb ages indicate that the meteorite has sampled a range of Pre-Nectarian volcanic rocks that are poorly represented in the Apollo, Luna, and lunar meteorite collections. As such, MIL 13317 adds to the growing evidence that basaltic volcanic activity on the Moon started as early as ~4340 Ma, before the main period of lunar mare basalt volcanism at ~3850 Ma.
  •  
15.
  • Haack, H., et al. (författare)
  • Ejby-A new H5/6 ordinary chondrite fall in Copenhagen, Denmark
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : WILEY. - 1086-9379 .- 1945-5100. ; 54:8, s. 1853-1869
  • Tidskriftsartikel (refereegranskat)abstract
    • On February 6, 2016 at 21:07:19 UT, a very bright fireball was seen over the eastern part of Denmark. The weather was cloudy over eastern Denmark, but many people saw the sky light up-even in the heavily illuminated Copenhagen. Two hundred and thirty three reports of the associated sound and light phenomena were received by the Danish fireball network. We have formed a consortium to describe the meteorite and the circumstances of the fall and the results are presented in this paper. The first fragment of the meteorite was found the day after the fall, and in the following weeks, a total of 11 fragments with a total weight of 8982 g were found. The meteorite is an unbrecciated, weakly shocked (S2), ordinary H chondrite of petrologic type 5/6 (Bouvier et al. 2017). The concentration of the cosmogenic radionuclides suggests that the preatmospheric radius was rather small similar to 20 cm. The cosmic ray exposure age of Ejby (83 +/- 11 Ma) is the highest of an H chondrite and the second highest age for an ordinary chondrite. Using the preatmospheric orbit of the Ejby meteoroid (Spurny et al. 2017) locations of the recovered fragments, and wind data from the date of the fall, we have modeled the dark flight (below 18 km) of the fragments. The recovery location of the largest fragment can only be explained if aerodynamic effects during the dark flight phase are included. The recovery location of all other fragments are consistent with the dark flight modeling.
  •  
16.
  • Hewins, Rodger, et al. (författare)
  • Regolith breccia Northwest Africa 7533: Mineralogy and petrology with implications for early Mars
  • 2016
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; , s. 1-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Northwest Africa 7533, a polymict Martian breccia, consists of fine-grained clast- laden melt particles and microcrystalline matrix. While both melt and matrix contain medium-grained noritic-monzonitic material and crystal clasts, the matrix also contains lithic clasts with zoned pigeonite and augite plus two feldspars, microbasaltic clasts, vitrophyric and microcrystalline spherules, and shards. The clast-laden melt rocks contain clump-like aggregates of orthopyroxene surrounded by aureoles of plagioclase. Some shards of vesicular melt rocks resemble the pyroxene-plagioclase clump-aureole structures. Submicron size matrix grains show some triple junctions, but most are irregular with high intergranular porosity. The noritic-monzonitic rocks contain exsolved pyroxenes and perthitic intergrowths, and cooled more slowly than rocks with zoned-pyroxene or fine grain size. Noritic material contains orthopyroxene or inverted pigeonite, augite, calcic to intermediate plagioclase, and chromite to Cr-bearing magnetite; monzonitic clasts contain augite, sodic plagioclase, K feldspar, Ti-bearing magnetite, ilmenite, chlorapatite, and zircon. These feldspathic rocks show similarities to some rocks at Gale Crater like Black Trout, Mara, and Jake M. The most magnesian orthopyroxene clasts are close to ALH 84001 orthopyroxene in composition. All these materials are enriched in siderophile elements, indicating impact melting and incorporation of a projectile component, except for Ni-poor pyroxene clasts which are from pristine rocks. Clast-laden melt rocks, spherules, shards, and siderophile element contents indicate formation of NWA 7533 as a regolith breccia. The zircons, mainly derived from monzonitic (melt) rocks, crystallized at 4.43 ` 0.03 Ga (Humayun et al. 2013) and a 147Sm-143Nd isochron for NWA 7034 yielding 4.42 ` 0.07 Ga (Nyquist et al. 2016) defines the crystallization age of all its igneous portions. The zircon from the monzonitic rocks has a higher D17O than other Martian meteorites explained in part by assimilation of regolith materials enriched during surface alteration (Nemchin et al. 2014). This record of protolith interaction with atmosphere- hydrosphere during regolith formation before melting demonstrates a thin atmosphere, a wet early surface environment on Mars, and an evolved crust likely to have contaminated younger extrusive rocks. The latest events recorded when the breccia was on Mars are resetting of apatite, much feldspar and some zircons at 1.35–1.4 Ga (Bellucci et al. 2015), and formation of Ni-bearing pyrite veins during or shortly after this disturbance (Lorand et al. 2015).
  •  
17.
  • Hietala, Satu, et al. (författare)
  • Petrographic studies and mineralogical characterization of the Dellen impactites
  • 2023
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 58:4, s. 480-500
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact origin of the Early Cretaceous (140.82 ± 0.51 Ma) 20-km diameter Dellen structure was proven in the late 60s based on the discovery of planar deformation features (PDFs) in quartz grains. Although decades have passed, impactites found from the crater have not received much attention. Thus, this study provides a detailed petrological and mineralogical description of impactites from Dellen. Impactites were classified based on mineralogical observations using the latest recommendations of nomenclature. The studied samples include impact melt rocks (clast rich, clast poor, and clast free), suevitic impact breccias, shocked and unshocked granite, and a shatter cone. Altogether, 16 samples with different lithologies were studied using a polarization microscope. Selected samples were studied with an energy dispersive spectroscopy detector attached to the scanning electron microscopy. PDFs were indexed using a four-axis universal stage from seven samples. Selected samples for PDF studies consisted of clast-rich impact melt rocks (DEL10, DEL13, D99), suevitic impact breccias (DEL14, DEL16, DEL24), and shocked granite target rock (DEL17). A total of 197 PDF sets in 113 quartz grains were studied, and 186 sets resulted in rational crystallographic orientations. Common orientations include π{101̅2}, ω{101̅3}, z{101̅1}, ξ{112̅2}, and {101̅4}. In suevitic impact breccias and impact melt rocks, ballen silica and plagioclase with checkerboard texture were abundant. The petrographic results in Dellen impactites indicate a range of shock pressures from at least 2 to over 60 GPa, based on diagnostic shock metamorphic features in minerals and the occurrence of impact melt rock.
  •  
18.
  • Hill, Andrew C., et al. (författare)
  • New records of Ediacaran Acraman ejecta in drillholes from the Stuart Shelf and Officer Basin, South Australia
  • 2007
  • Ingår i: Meteoritics and Planetary Science. - 1086-9379 .- 1945-5100. ; 42:11, s. 1883-1891
  • Tidskriftsartikel (refereegranskat)abstract
    • New occurrences of the Acraman impact ejecta layer were recently discovered in two South Australian drillholes, SCYW-79 1a (Stuart Shelf) and Munta 1 (Officer Basin) using lithostratigraphy, acritarch biostratigraphy, carbon isotope stratigraphy, and biomarker anomalies to predict the stratigraphic position. The ejecta layer is conspicuous because it consists of pink, sand-sized, angular fragments of volcanic rock distributed along the bedding plane surface of green marine siltstone. In SCYW-79 1a it forms a layer 5 mm thick; in Munta 1 the ejecta layer is thin and discontinuous because of its distance (similar to 550 km) from the impact structure. Palynological, biomarker, and carbon isotope anomalies can now be shown to coincide with the ejecta layer in SCYW-79 1a and Munta 1 suggesting the Acraman impact event may have had far reaching influences on the rapidly evolving Ediacaran biological and geochemical cycles.
  •  
19.
  • Holm-Alwmark, S., et al. (författare)
  • An Early Jurassic age for the Puchezh-Katunki impact structure (Russia) based on 40Ar/39Ar data and palynology
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 54:8, s. 1764-1780
  • Tidskriftsartikel (refereegranskat)abstract
    • The Puchezh-Katunki impact structure, 40–80 km in diameter, located ~400 km northeast of Moscow (Russia), has a poorly constrained age between ~164 and 203 Ma (most commonly quoted as 167 ± 3 Ma). Due to its relatively large size, the Puchezh-Katunki structure has been a prime candidate for discussions on the link between hypervelocity impacts and extinction events. Here, we present new 40Ar/39Ar data from step-heating analysis of five impact melt rock samples that allow us to significantly improve the age range for the formation of the Puchezh-Katunki impact structure to 192–196 Ma. Our results also show that there is not necessarily a simple relationship between the observed petrographic features of an impact melt rock sample and the obtained 40Ar/39Ar age spectra and inverse isochrons. Furthermore, a new palynological investigation of the postimpact crater lake sediments supports an age significantly older than quoted in the literature, i.e., in the interval late Sinemurian to early Pliensbachian, in accordance with the new radioisotopic age estimate presented here. The new age range of the structure is currently the most reliable age estimate of the Puchezh-Katunki impact event.
  •  
20.
  • Jenniskens, Peter, et al. (författare)
  • The Creston, California, meteorite fall and the origin of L chondrites
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:4, s. 699-720
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been proposed that all L chondrites resulted from an ongoing collisional cascade of fragments that originated from the formation of the ~500 Ma old asteroid family Gefion, located near the 5:2 mean‐motion resonance with Jupiter in the middle Main Belt. If so, L chondrite pre‐atmospheric orbits should be distributed as expected for that source region. Here, we present contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary chondrite fall at Creston, CA (here reclassified to L5/6). Creston's short 1.30 ± 0.02 AU semimajor axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt. Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston's small meteoroid size and low 4.23 ± 0.07° inclination indicate a short dynamical lifetime against collisions. This suggests, instead, that Creston originated most likely in the inner asteroid belt and was delivered via the ν6 resonance. The U‐Pb systematics of Creston apatite reveals a Pb‐Pb age of 4,497.1 ± 3.7 Ma, and an upper intercept U‐Pb age of 4,496.7 ± 5.8 Ma (2σ), circa 70 Ma after formation of CAI, as found for other L chondrites. The K‐Ar (age ~4.3 Ga) and U,Th‐He (age ~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U‐Pb age is poorly defined as 770 ± 320 Ma. So far, the three known L chondrites that impacted on orbits with semimajor axes a <2.0 AU all have high (>3 Ga) K‐Ar ages. This argues for a source of some of our L chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of Gefion family debris stretching across the 3:1 mean‐motion resonance.
  •  
21.
  • Jenniskens, Peter, et al. (författare)
  • The impact and recovery of asteroid 2018 LA
  • 2021
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 56:4, s. 844-893
  • Tidskriftsartikel (refereegranskat)abstract
    • The June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. Twenty‐three meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as an HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g cm−3, a relatively low albedo pV ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth‐impacting orbit via the ν6 resonance. The impact that ejected 2018 LA in an orbit toward Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U‐Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb‐Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.
  •  
22.
  • Lenaz, Davide, et al. (författare)
  • Crystal structure refinement of chromites from two achondrites, their T-f(O2) conditions, and implications
  • 2017
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 52:9, s. 1763-1775
  • Tidskriftsartikel (refereegranskat)abstract
    • Six Cr-spinel grains from NWA 6077 brachinite-like and NWA 725 winonaite achondrites have been studied by single-crystal X-ray diffraction and structural refinement. From a chemical point of view, spinels from NWA 6077 show Cr/(Cr + Al) (i.e., Cr#) and Mg/(Mg + Fe2+) (i.e., Mg#) values similar to other brachinites, while the Cr# of NWA 725 is lower than that of literature winonaites. Spinels from NWA 6077 and NWA 725 meteorites show similar cell edges, while the oxygen positional parameter is rather different being about 0.2629 for NWA 6077 and 0.2622 for NWA 725. Considering both parameters, NWA 725 shows structural features that are close to some terrestrial spinel occurrences as in komatiites, kimberlites, or included in diamonds; those from NWA 6077 show values that have no terrestrial analogs. Olivine-chromite closure temperature ranges from ~737 to ~765° C for NWA 725, being similar to that of literature winonaites and ~846 to ~884° C for NWA 6077. The logfO2 ranges from -19.8 to -20.5 and -17.0 to -17.9 for the two meteorites, respectively. The u values for terrestrial samples can give information about the cooling history of the samples. For the extraterrestrial samples, it seems that it can give information about the cooling only for spinels where it is lower than 0.2625. For higher values, it appears related only to the chemistry of the spinels.
  •  
23.
  •  
24.
  • Lorand, Jean-Pierre, et al. (författare)
  • The sulfur budget and sulfur isotopic composition of Martian regolith breccia NWA 7533
  • 2020
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons, Ltd. - 1086-9379 .- 1945-5100. ; 55:9, s. 2097-2116
  • Tidskriftsartikel (refereegranskat)abstract
    • The sulfur isotope budget of Martian regolith breccia (NWA 7533) has been addressed from conventional fluorination bulk rock analyses and ion microprobe in situ analyses. The bulk rock analyses yield 865 ± 50 ppm S in agreement with LA-ICP-MS analyses. These new data support previous estimates of 80% S loss resulting from terrestrial weathering of NWA 7533 pyrite. Pyrite is by far the major S host. Apatite and Fe oxyhydroxides are negligible S carriers, as are the few tiny igneous pyrrhotite-pentlandite sulfide grains included in lithic clasts so far identified. A small nonzero delta-33S (-0.029 ± 0.010) signal is clearly resolved at the 2σ level in the bulk rock analyses, coupled with negative CDT-normalized δ34S (-2.54 ± 0.10 permil) and near-zero delta-36S (0.002 ± 0.09 permil). In situ analyses also yield negative delta-33S values (-0.05 to -0.30 permil) with only a few positive delta-33S up to +0.38 permil. The slight discrepancy compared to the bulk rock results is attributed to a possible sampling bias. The occurrence of mass-independent fractionation (MIF) supports a model of NWA 7533 pyrite formation from surface sulfur that experienced photochemical reaction(s). The driving force that recycled crustal S in NWA 7533 lithologies - magmatic intrusions or impact-induced heat - is presently unclear. However, in situ analyses also gave negative δ34S values (+1 to -5.8 permil). Such negative values in the hydrothermal setting of NWA 7533 are reflective of hydrothermal sulfides precipitated from H2S/HS- aqueous fluid produced via open-system thermochemical reduction of sulfates at high temperatures (>300 °C).
  •  
25.
  • Losiak, A., et al. (författare)
  • Dating a small impact crater : An age of Kaali crater (Estonia) based on charcoal emplaced within proximal ejecta
  • 2016
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 51:4, s. 681-695
  • Tidskriftsartikel (refereegranskat)abstract
    • The estimates of the age of the Kaali impact structure (Saaremaa Island, Estonia) provided by different authors vary by as much as 6000years, ranging from similar to 6400 to similar to 400 before current era (BCE). In this study, a new age is obtained based on C-14 dating charred plant material within the proximal ejecta blanket, which makes it directly related to the impact structure, and not susceptible to potential reservoir effects. Our results show that the Kaali crater was most probably formed shortly after 1530-1450 BCE (3237 +/- 10 C-14 yr BP). Saaremaa was already inhabited when the bolide hit the Earth, thus, the crater-forming event was probably witnessed by humans. There is, however, no evidence that this event caused significant change in the material culture (e.g., known archeological artifacts) or patterns of human habitation on Saaremaa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 81
Typ av publikation
tidskriftsartikel (78)
konferensbidrag (3)
Typ av innehåll
refereegranskat (79)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Schmitz, Birger (21)
Alwmark, Carl (17)
Nemchin, Alexander (6)
Caffee, Marc W. (6)
Alwmark, Sanna (5)
Meier, Matthias (5)
visa fler...
Alwmark, C. (5)
Busemann, Henner (5)
Whitehouse, Martin (5)
Nemchin, A. A. (5)
Heck, Philipp R. (5)
Jenniskens, Peter (5)
Laubenstein, Matthia ... (5)
Welten, Kees C. (5)
Whitehouse, Martin J ... (4)
Ormo, J. (4)
Sturkell, Erik, 1962 (4)
Ormö, Jens (4)
Granvik, Mikael (4)
Cronholm, Anders (4)
Wieler, Rainer (4)
Holm-Alwmark, Sanna (4)
Yin, Qing-Zhu (4)
Zolensky, Michael E. (4)
Ziegler, Karen (4)
Albers, Jim (4)
Scherstén, Anders (3)
Brown, Peter (3)
Liu, Yu (3)
Humayun, Munir (3)
Bellucci, Jeremy (3)
Merle, Renaud E., 19 ... (3)
Rout, Surya S. (3)
Zhou, Qin (3)
Lindgren, Paula (3)
Greenwood, R. C. (3)
Li, Qiu-Li (3)
Henkel, Herbert (3)
Meier, Matthias M.M. (3)
Friedrich, Jon M. (3)
Verosub, Kenneth L. (3)
Rowland, Douglas J. (3)
Sanborn, Matthew E. (3)
Nishiizumi, Kunihiko (3)
Glavin, Daniel P. (3)
Dworkin, Jason P. (3)
Li, Xian-Hua (3)
Tang, Guo-Qiang (3)
Maden, Colin (3)
Pidgeon, R.T. (3)
visa färre...
Lärosäte
Lunds universitet (46)
Naturhistoriska riksmuseet (15)
Luleå tekniska universitet (8)
Göteborgs universitet (6)
Stockholms universitet (5)
Uppsala universitet (4)
visa fler...
Kungliga Tekniska Högskolan (3)
RISE (1)
visa färre...
Språk
Engelska (81)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (69)
Teknik (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy