SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1542 7390 "

Sökning: L773:1542 7390

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adriani, O., et al. (författare)
  • PAMELA's measurements of geomagnetic cutoff variations during the 14 December 2006 storm
  • 2016
  • Ingår i: Space Weather. - : Blackwell Publishing. - 1542-7390. ; 14:3, s. 210-220
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment were used to measure the geomagnetic cutoff for high-energy ( 80MeV) protons during the 14 December 2006 geomagnetic storm. The variations of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to spacecraft orbital periods (approximate to 94 min). Estimated cutoff values were compared with those obtained by means of a trajectory-tracing approach based on a dynamical empirical modeling of the Earth's magnetosphere. We found significant variations in the cutoff latitude, with a maximum suppression of approximate to 7 degrees at lowest rigidities during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were related to the changes in the magnetospheric configuration, investigating the role of interplanetary magnetic field, solar wind, and geomagnetic parameters. PAMELA's results represent the first direct measurement of geomagnetic cutoffs for protons with kinetic energies in the sub-GeV and GeV region.
  •  
2.
  • Dimmock, Andrew P., et al. (författare)
  • Modeling the Geomagnetic Response to the September 2017 Space Weather Event Over Fennoscandia Using the Space Weather Modeling Framework : Studying the Impacts of Spatial Resolution
  • 2021
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 19:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We must be able to predict and mitigate against geomagnetically induced current (GIC) effects to minimize socio-economic impacts. This study employs the space weather modeling framework (SWMF) to model the geomagnetic response over Fennoscandia to the September 7-8, 2017 event. Of key importance to this study is the effects of spatial resolution in terms of regional forecasts and improved GIC modeling results. Therefore, we ran the model at comparatively low, medium, and high spatial resolutions. The virtual magnetometers from each model run are compared with observations from the IMAGE magnetometer network across various latitudes and over regional-scales. The virtual magnetometer data from the SWMF are coupled with a local ground conductivity model which is used to calculate the geoelectric field and estimate GICs in a Finnish natural gas pipeline. This investigation has lead to several important results in which higher resolution yielded: (1) more realistic amplitudes and timings of GICs, (2) higher amplitude geomagnetic disturbances across latitudes, and (3) increased regional variations in terms of differences between stations. Despite this, substorms remain a significant challenge to surface magnetic field prediction from global magnetohydrodynamic modeling. For example, in the presence of multiple large substorms, the associated large-amplitude depressions were not captured, which caused the largest model-data deviations. The results from this work are of key importance to both modelers and space weather operators. Particularly when the goal is to obtain improved regional forecasts of geomagnetic disturbances and/or more realistic estimates of the geoelectric field.
  •  
3.
  • Dimmock, Andrew P., et al. (författare)
  • On the Regional Variability ofdB/dtand Its Significance to GIC
  • 2020
  • Ingår i: Space Weather. - : AMER GEOPHYSICAL UNION. - 1542-7390. ; 18:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Faraday's law of induction is responsible for setting up a geoelectric field due to the variations in the geomagnetic field caused by ionospheric currents. This drives geomagnetically induced currents (GICs) which flow in large ground-based technological infrastructure such as high-voltage power lines. The geoelectric field is often a localized phenomenon exhibiting significant variations over spatial scales of only hundreds of kilometers. This is due to the complex spatiotemporal behavior of electrical currents flowing in the ionosphere and/or large gradients in the ground conductivity due to highly structured local geological properties. Over some regions, and during large storms, both of these effects become significant. In this study, we quantify the regional variability ofdB/dtusing closely placed IMAGE stations in northern Fennoscandia. The dependency between regional variability, solar wind conditions, and geomagnetic indices are also investigated. Finally, we assess the significance of spatial geomagnetic variations to modeling GICs across a transmission line. Key results from this study are as follows: (1) Regional geomagnetic disturbances are important in modeling GIC during strong storms; (2)dB/dtcan vary by several times up to a factor of three compared to the spatial average; (3)dB/dtand its regional variation is coupled to the energy deposited into the magnetosphere; and (4) regional variability can be more accurately captured and predicted from a local index as opposed to a global one. These results demonstrate the need for denser magnetometer networks at high latitudes where transmission lines extending hundreds of kilometers are present.
  •  
4.
  • Dimmock, Andrew P., et al. (författare)
  • The GIC and Geomagnetic Response Over Fennoscandia to the 7-8 September 2017 Geomagnetic Storm
  • 2019
  • Ingår i: Space Weather. - 1542-7390. ; 17:7, s. 989-1010
  • Tidskriftsartikel (refereegranskat)abstract
    • Between 7 and 8 September 2017, Earth experienced extreme space weather events. We have combined measurements made by the IMAGE magnetometer array, ionospheric equivalent currents, geomagnetically induced current (GIC) recordings in the Finnish natural gas pipeline, and multiple ground conductivity models to study the Fennoscandia ground effects. This unique analysis has revealed multiple interesting physical and technical insights. We show that although the 7-8 September event was significant by global indices (Dst similar to 150 nT), it produced an unexpectedly large peak GIC. It is intriguing that our peak GIC did not occur during the intervals of largest geomagnetic depressions, nor was there any clear upstream trigger. Another important insight into this event is that unusually large and rare GIC amplitudes (>10 A) occurred in multiple Magnetic Local Time (MLT) sectors and could be associated with westward and eastward electrojets. We were also successfully able to model the geoelectric field and GIC using multiple models, thus providing a further important validation of these models for an extreme event. A key result from our multiple conductivity model comparison was the good agreement between the temporal features of 1-D and 3-D model results. This provides an important justification for past and future uses of 1-D models at Mantsala which is highly relevant to additional uses of this data set. Although the temporal agreement (after scaling) was good, we found a large (factor of 4) difference in the amplitudes between local and global ground models due to the difference in model conductivities. Thus, going forward, obtaining accurate ground conductivity values are key for GIC modeling.
  •  
5.
  • Engebretson, Mark J., et al. (författare)
  • Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices
  • 2021
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 19:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. This study compares the occurrence and amplitude of nighttime MPEs with |dB/dt| ≥ 6 nT/s observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of magnetic local time (MLT), the SME (SuperMAG version of AE) and SYM/H magnetic indices, and time delay after substorm onsets. Although most MPEs occurred within 30 min after a substorm onset, ∼10% of those observed at the four lower latitude stations occurred over two hours after the most recent onset. A broad distribution in local time appeared at all five stations between 1700 and 0100 MLT, and a narrower distribution appeared at the lower latitude stations between 0200 and 0700 MLT. There was little or no correlation between MPE amplitude and the SYM/H index; most MPEs at all stations occurred for SYM/H values between −40 and 0 nT. SME index values for MPEs observed >1 h after the most recent substorm onset fell in the lower half of the range of SME values for events during substorms, and dipolarizations in synchronous orbit at GOES 13 during these events were weaker or more often nonexistent. These observations suggest that substorms are neither necessary nor sufficient to cause MPEs, and hence predictions of GICs cannot focus solely on substorms.
  •  
6.
  • Facsko, G., et al. (författare)
  • One year in the Earth's magnetosphere : A global MHD simulation and spacecraft measurements
  • 2016
  • Ingår i: Space Weather. - 1542-7390. ; 14:5, s. 351-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of the Earth's magnetosphere to changing solar wind conditions is studied with a 3-D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earth's magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data are first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the L-1 Lagrange point to the foreshock; therefore, the OMNIWeb data are appropriate input to the GUMICS-4. The Cluster SC3 footprints are determined by magnetic field mapping from the simulation results and the Tsyganenko (T96) model in order to compare two methods. The determined footprints are in rather good agreement with the T96. However, it was found that the footprints agree better in the Northern Hemisphere than the Southern one during quiet conditions. If the B-y is not zero, the agreement of the GUMICS-4 and T96 footprint is worse in longitude in the Southern Hemisphere. Overall, the study implies that a 3-D MHD model can increase our insight of the response of the magnetosphere to solar wind conditions.
  •  
7.
  • Kilpua, E. K. J., et al. (författare)
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions : Variation and Driver Dependence
  • 2019
  • Ingår i: Space Weather. - 1542-7390. ; 17:8, s. 1257-1280
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical study of interplanetary conditions and geospace response to 89 coronal mass ejection-driven sheaths observed during Solar Cycles 23 and 24. We investigate in particular the dependencies on the driver properties and variations across the sheath. We find that the ejecta speed principally controls the sheath geoeffectiveness and shows the highest correlations with sheath parameters, in particular in the region closest to the shock. Sheaths of fast ejecta have on average high solar wind speeds, magnetic (B) field magnitudes, and fluctuations, and they generate efficiently strong out-of-ecliptic fields. Slow-ejecta sheaths are considerably slower and have weaker fields and field fluctuations, and therefore they cause primarily moderate geospace activity. Sheaths of weak and strong B field ejecta have distinct properties, but differences in their geoeffectiveness are less drastic. Sheaths of fast and strong ejecta push the subsolar magnetopause significantly earthward, often even beyond geostationary orbit. Slow-ejecta sheaths also compress the magnetopause significantly due to their large densities that are likely a result of their relatively long propagation times and source near the streamer belt. We find the regions near the shock and ejecta leading edge to be the most geoeffective parts of the sheath. These regions are also associated with the largest B field magnitudes, out-of-ecliptic fields, and field fluctuations as well as largest speeds and densities. The variations, however, depend on driver properties. Forecasting sheath properties is challenging due to their variable nature, but the dependence on ejecta properties determined in this work could help to estimate sheath geoeffectiveness through remote-sensing coronal mass ejection observations.
  •  
8.
  • Kruglyakov, Mikhail, et al. (författare)
  • Multi-Site Transfer Function Approach for Real-Time Modeling of the Ground Electric Field Induced by Laterally-Nonuniform Ionospheric Source
  • 2023
  • Ingår i: Space Weather. - : Amer Geophysical Union. - 1542-7390. ; 21:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a novel approach to model the ground electric field (GEF) induced by laterally-nonuniform ionospheric sources in real time. The approach exploits the multi-site transfer function concept, continuous magnetic field measurements at multiple sites in the region of interest, and spatial modes describing the ionospheric source. We compared the modeled GEFs with those measured at two locations in Fennoscandia and observed good agreement between modeled and measured GEF. Besides, we compared GEF-based geomagnetically induced current (GIC) with that measured at the Mantsala natural gas pipeline recording point and again observed remarkable agreement between modeled and measured GIC.
  •  
9.
  • Lanabere, Vanina, et al. (författare)
  • Analysis of the Geoelectric Field in Sweden Over Solar Cycles 23 and 24 : Spatial and Temporal Variability During Strong GIC Events
  • 2023
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 21:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Geomagnetic storms can produce large perturbations on the Earth magnetic field. Through complex magnetosphere-ionosphere coupling, the geoelectric field (E) and geomagnetic field (B) are highly perturbed. The E is the physical driver of geomagnetically induced currents. However, a statistical study of the E in Sweden has never been done before. We combined geomagnetic data from the International Monitor for Auroral Geomagnetic Effects network in Northern Europe with a 3-D structure of Earth's electrical conductivity in Sweden as the input of a 1-D model to compute the E between 2000 and 2018. Northwestern Sweden presents statistically larger E magnitudes due to larger |dB/dt| variations in the north than in the south of Sweden and relative lower conductivity in the west compared to central and eastern Sweden. In contrast, the 15 strongest daily maximum |E| events present more frequently a maximum magnitude in central Sweden (62.25 degrees N) and their relative strengths are not the same for all latitudes. These results highlight the different regional response to geomagnetic storms, which can be related to ground conductivity variability and the complex magnetosphere-ionosphere coupling mechanisms. Solar storms represent a major threat to Earth's technology and therefore affect society and the economy. Historically, the main effects were related to electric power grid failures leaving many people without electricity for several hours. In order to prevent this from happening again, it is necessary to understand the temporal and spatial variability of the Earth's electric field in regions where electric power grids are placed. This study combines ground measurements of the magnetic fields in Finland and Estonia and ground conductivity maps in Sweden to estimate the ground electric fields in Sweden. A statistical analysis from 2000 to 2018 shows that the probability to find stronger daily maximum electric field magnitude (|E|) is higher in northwestern Sweden. However, the 15 strongest |E| events were found in the central region of Sweden. Furthermore, 80% of the electric power grid failure reports in Sweden during the period, correspond to events where the strongest daily maximum |E| were observed at 62.25 degrees N. This implies that a better understanding of the local geoelectric field and driving processes are required. The daily maximum geoelectric field magnitude is statistically larger in northwestern Sweden than in central and southern SwedenThe 15 strongest daily maximum geoelectric field events were more frequent in central Sweden than in northern SwedenThe 15 strongest events at each latitude are different, so the geoelectric field presents an important regional variability
  •  
10.
  • Liemohn, Michael W., et al. (författare)
  • Model Evaluation Guidelines for Geomagnetic Index Predictions
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:12, s. 2079-2102
  • Tidskriftsartikel (refereegranskat)abstract
    • Geomagnetic indices are convenient quantities that distill the complicated physics of some region or aspect of near‐Earth space into a single parameter. Most of the best‐known indices are calculated from ground‐based magnetometer data sets, such as Dst, SYM‐H, Kp, AE, AL, and PC. Many models have been created that predict the values of these indices, often using solar wind measurements upstream from Earth as the input variables to the calculation. This document reviews the current state of models that predict geomagnetic indices and the methods used to assess their ability to reproduce the target index time series. These existing methods are synthesized into a baseline collection of metrics for benchmarking a new or updated geomagnetic index prediction model. These methods fall into two categories: (1) fit performance metrics such as root‐mean‐square error and mean absolute error that are applied to a time series comparison of model output and observations and (2) event detection performance metrics such as Heidke Skill Score and probability of detection that are derived from a contingency table that compares model and observation values exceeding (or not) a threshold value. A few examples of codes being used with this set of metrics are presented, and other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, including several caveats to consider when using geomagnetic indices.
  •  
11.
  • Mann, I. R., et al. (författare)
  • International Collaboration Within the United Nations Committee on the Peaceful Uses of Outer Space : Framework for International Space Weather Services (2018-2030)
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:5, s. 428-433
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Severe space weather is a global threat that requires a coordinated global response. In this Commentary, we review some previous successful actions supporting international coordination between member states in the United Nations (UN) context and make recommendations for a future approach. Member states of the UN Committee on the Peaceful Uses of Outer Space (COPUOS) recently approved new guidelines related to space weather under actions for the long-term sustainability of outer space activities. This is to be followed by UN Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE)+50, which will take place in June 2018 on the occasion of the fiftieth anniversary of the first UNISPACE I held in Vienna in 1968. Expanded international coordination has been proposed within COPUOS under the UNISPACE+50 process, where priorities for 2018-2030 are to be defined under Thematic Priority 4: Framework for International Space Weather Services. The COPUOS expert group for space weather has proposed the creation of a new International Coordination Group for Space Weather be implemented as part of this thematic priority. This coordination group would lead international coordination between member states and across international stakeholders, monitor progress against implementation of guidelines and best practices, and promote coordinated global efforts in the space weather ecosystem spanning observations, research, modeling, and validation, with the goal of improved space weather services. We argue that such improved coordination at the international policy level is essential for increasing global resiliency against the threats arising from severe space weather.
  •  
12.
  • Palmerio, Erika, et al. (författare)
  • CMEs and SEPs During November-December 2020 : A Challenge for Real-Time Space Weather Forecasting
  • 2022
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 20:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this work, we aim to analyze the whole inner heliospheric context between two eruptive flares that took place in late 2020, that is, the M4.4 flare of 29 November and the C7.4 flare of 7 December. This period is especially interesting because the STEREO-A spacecraft was located similar to 60 degrees east of the Sun-Earth line, giving us the opportunity to test the capabilities of "predictions at 360 degrees" using remote-sensing observations from the Lagrange L1 and L5 points as input. We simulate the CMEs that were ejected during our period of interest and the SEPs accelerated by their shocks using the WSA-Enlil-SEPMOD modeling chain and four sets of input parameters, forming a "mini-ensemble." We validate our results using in situ observations at six locations, including Earth and Mars. We find that, despite some limitations arising from the models' architecture and assumptions, CMEs and shock-accelerated SEPs can be reasonably studied and forecast in real time at least out to several tens of degrees away from the eruption site using the prediction tools employed here.
  •  
13.
  • Park, Jong-Sun, et al. (författare)
  • Statistical features of polar cap North and South indices in response to interplanetary and terrestrial conditions : a revisit
  • 2024
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigate statistical features of polar cap north (PCN) and south (PCS) indices in response to various interplanetary conditions (interplanetary magnetic field [IMF] orientation in three-dimensions) and terrestrial conditions (seasonal and magnetic local time [MLT] locations of the index stations). The concurrent PCN-PCS pairs for 1998–2002 and 2004–2018 are divided based on their sign type (positive-positive, negative-negative, negative-positive, and positive-negative PCN-PCS pairs) and time coverage (the times when both index stations are in the dawn/dusk MLT sector during northern summer/winter). Analyzing the IMF orientation dependence on the occurrence probabilities of concurrent indices and on the differences between the indices in various sign types for each time coverage reveals that the statistical features in PCN-PCS pairs obtained in the dawn MLT sector can be largely explained by the effects of the three-component IMF (related to the polar cap convection patterns) combined with season (related to the hemispheric asymmetry in solar illumination-induced ionospheric conductance). However, those obtained in the dusk MLT sector are controlled dominantly by seasonal effects rather than IMF orientation effects. Our findings indicate that PCN-PCS pair data provide local views about the solar wind-magnetosphere-ionosphere (SW-M-I) coupling system with different control efficiencies of IMF orientation and season depending on the MLT location of the stations. Therefore, introducing polar cap indices recorded simultaneously at various locations in both hemispheres and analyzing them are strongly required to infer global views of the coupled SW-M-I system in the open field regions with higher confidence.
  •  
14.
  • Rosenqvist, L., et al. (författare)
  • 3D Modeling of Geomagnetically Induced Currents in Sweden-Validation and Extreme Event Analysis
  • 2022
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosenqvist and Hall (2019), developed a proof-of-concept modeling capability that incorporates a detailed 3D structure of Earth's electrical conductivity in a geomagnetically induced current estimation procedure (GIC-SMAP). The model was verified based on GIC measurements in northern Sweden. The study showed that southern Sweden is exposed to stronger electric fields due to a combined effect of low crustal conductivity and the influence of the surrounding coast. This study aims at further verifying the model in this region. GIC measurements on a power line at the west coast of southern Sweden are utilized. The location of the transmission line was selected to include coast effects at the ocean-land interface to investigate the importance of using 3D induction modeling methods. The model is used to quantify the hazard of severe GICs in this particular transmission line by using historic recordings of strong geomagnetic disturbances. To quantify a worst-case scenario GICs are calculated from modeled magnetic disturbances by the Space Weather Modeling Framework based on estimates for an idealized extreme interplanetary coronal mass ejection. The observed and estimated GIC based on the 3D GIC-SMAP procedure in the transmission line in southern Sweden are in good agreement. In contrast, 1D methods underestimate GICs by about 50%. The estimated GICs in the studied transmission line exceed 100 A for one of 14 historical geomagnetic storm intervals. The peak GIC during the sudden impulse phase of a "perfect" storm exceeds 300 A but depends on the locality of the station as the interplanetary magnetic cloud hits Earth.
  •  
15.
  • Rosenqvist, L., et al. (författare)
  • 3D Modeling of Geomagnetically Induced Currents in Sweden—Validation and Extreme Event Analysis
  • 2022
  • Ingår i: Space Weather. - : John Wiley & Sons. - 1542-7390. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosenqvist and Hall (2019), https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW002084 developed a proof-of-concept modeling capability that incorporates a detailed 3D structure of Earth's electrical conductivity in a geomagnetically induced current estimation procedure (GIC-SMAP). The model was verified based on GIC measurements in northern Sweden. The study showed that southern Sweden is exposed to stronger electric fields due to a combined effect of low crustal conductivity and the influence of the surrounding coast. This study aims at further verifying the model in this region. GIC measurements on a power line at the west coast of southern Sweden are utilized. The location of the transmission line was selected to include coast effects at the ocean-land interface to investigate the importance of using 3D induction modeling methods. The model is used to quantify the hazard of severe GICs in this particular transmission line by using historic recordings of strong geomagnetic disturbances. To quantify a worst-case scenario GICs are calculated from modeled magnetic disturbances by the Space Weather Modeling Framework based on estimates for an idealized extreme interplanetary coronal mass ejection. The observed and estimated GIC based on the 3D GIC-SMAP procedure in the transmission line in southern Sweden are in good agreement. In contrast, 1D methods underestimate GICs by about 50%. The estimated GICs in the studied transmission line exceed 100 A for one of 14 historical geomagnetic storm intervals. The peak GIC during the sudden impulse phase of a “perfect” storm exceeds 300 A but depends on the locality of the station as the interplanetary magnetic cloud hits Earth.
  •  
16.
  • Sánchez-Cano, Beatriz, et al. (författare)
  • Solar Energetic Particle Events Detected in the Housekeeping Data of the European Space Agency's Spacecraft Flotilla in the Solar System
  • 2023
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 21:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the growing importance of planetary Space Weather forecasting and radiation protection for science and robotic exploration and the need for accurate Space Weather monitoring and predictions, only a limited number of spacecraft have dedicated instrumentation for this purpose. However, every spacecraft (planetary or astronomical) has hundreds of housekeeping sensors distributed across the spacecraft, some of which can be useful to detect radiation hazards produced by solar particle events. In particular, energetic particles that impact detectors and subsystems on a spacecraft can be identified by certain housekeeping sensors, such as the Error Detection and Correction (EDAC) memory counters, and their effects can be assessed. These counters typically have a sudden large increase in a short time in their error counts that generally match the arrival of energetic particles to the spacecraft. We investigate these engineering datasets for scientific purposes and perform a feasibility study of solar energetic particle event detections using EDAC counters from seven European Space Agency Solar System missions: Venus Express, Mars Express, ExoMars-Trace Gas Orbiter, Rosetta, BepiColombo, Solar Orbiter, and Gaia. Six cases studies, in which the same event was observed by different missions at different locations in the inner Solar System are analyzed. The results of this study show how engineering sensors, for example, EDAC counters, can be used to infer information about the solar particle environment at each spacecraft location. Therefore, we demonstrate the potential of the various EDAC to provide a network of solar particle detections at locations where no scientific observations of this kind are available.
  •  
17.
  • Schillings, Audrey, et al. (författare)
  • Distribution and Occurrence Frequency of dB/dt Spikes During Magnetic Storms 1980–2020
  • 2022
  • Ingår i: Space Weather. - : John Wiley & Sons. - 1542-7390. ; 20:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical magnetospheric cause for geomagnetically induced currents (GICs) are rapid time-varying magnetic fields (dB/dt), which occur mainly during magnetic substorms and storms. When, where and why exactly such rapid dB/dt may occur is insufficiently understood. We investigated all storms since 1980 and analyzed the negative and positive dB/dt spikes (>|500| nT/min) in the north and east component using a worldwide coverage (SuperMAG). Our analysis confirmed the existence of two dB/dt spikes "hotspots" located in the pre-midnight and in the morning magnetic local time sector, independently of the geographic location of the stations. The associated physical phenomena are probably substorm current wedge onsets and westward traveling surges (WTS) in the evening sector, and wave- or vortex-like current flows in the morning sector known as Omega bands. We observed a spatiotemporal evolution of the negative northern dB/dt spikes. The spikes initially occur in the pre-midnight sector, and then develop in time toward the morning sector. This spatiotemporal sequence is correlated with bursts in the AE index, and can be repeated several times throughout a storm. Finally, we investigated the peak value of Dst and AE during the storm period in comparison with the dB/dt spike occurrence frequency, we did not find any correlation. This result implies that a moderate storm with many spikes can be as (or more) dangerous for ground-based infrastructures than a major storm with fewer dB/dt spikes. Our findings regarding the physical causes and characteristics of dB/dt spikes may help to improve the GIC forecast for the affected regions.
  •  
18.
  • Schillings, Audrey, et al. (författare)
  • O+ Escape During the Extreme Space Weather Event of 4–10 September 2017
  • 2018
  • Ingår i: Space Weather. - : Blackwell Publishing. - 1542-7390. ; 16:9, s. 1363-1376
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the consequences of extreme space weather on ion outflow from the polar ionosphere by analyzing the solar storm that occurred early September 2017, causing a severe geomagnetic storm. Several X-flares and coronal mass ejections were observed between 4 and 10 September. The first shock—likely associated with a coronal mass ejection—hit the Earth late on 6 September, produced a storm sudden commencement, and began the initial phase of the storm. It was followed by a second shock, approximately 24 hr later, that initiated the main phase and simultaneously the Dst index dropped to Dst = −142 nT and Kp index reached Kp = 8. Using COmposition DIstribution Function data on board Cluster satellite 4, we estimated the ionospheric O+ outflow before and after the second shock. We found an enhancement in the polar cap by a factor of 3 for an unusually high ionospheric O+ outflow (mapped to an ionospheric reference altitude) of 1013 m−2 s−1. We suggest that this high ionospheric O+ outflow is due to a preheating of the ionosphere by the multiple X-flares. Finally, we briefly discuss the space weather consequences on the magnetosphere as a whole and the enhanced O+ outflow in connection with enhanced satellite drag.
  •  
19.
  • Song, Hosub, et al. (författare)
  • Tandem Observations of Nighttime Mid-Latitude Topside Ionospheric Perturbations
  • 2023
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 21:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nighttime medium-scale traveling ionospheric disturbances (MSTIDs) have been generally observed by ground-based instruments. However, they provide 2-dimensional images over only a limited field of view and are not distributed globally. The ground-based observations reported that MSTID wavefronts exhibit backward-C shapes virtually straddling the dip equator. In situ plasma density measurements onboard individual satellites could overcome the limited coverage of ground-based MSTID observations. But, most of those spacecrafts could obtain only 1-dimensional profiles of plasma density, which leaves uncertain whether the observed perturbations generally have the characteristic directivity of MSTIDs. This paper addresses this knowledge gap by statistically investigating nighttime perturbations in the mid-latitude topside ionosphere observed by tandem satellites, Swarm A and C. We cross-correlate the plasma density profiles observed by Swarm A and C. The correlation coefficient tends to increase as the two spacecraft move closer, allowing us to derive the disturbances' directivity whenever the Swarm A and C observations are correlated significantly. The directivity statistics agree well with the backward-C shape. Furthermore, the wavefront directions have clear dependence on magnetic latitudes while they are not as well aligned with local time, which is also consistent with previous reports on nighttime MSTIDs using ground-based observations and computer simulations. Additionally, we demonstrate that the nighttime MSTIDs can increase the topside Rate Of Total electron content Index above Swarm. All the above-mentioned results support that the nighttime mid-latitude perturbations observed by Swarm can be identified as MSTIDs on the whole, which is the most important finding of this paper.
  •  
20.
  • Vandegriff, Erik M., et al. (författare)
  • Exploring Localized Geomagnetic Disturbances in Global MHD : Physics and Numerics
  • 2024
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the prominent effects of space weather is the formation of rapid geomagnetic field variations on Earth's surface driven by the magnetosphere-ionosphere system. These geomagnetic disturbances (GMDs) cause geomagnetically induced currents to run through ground conducting systems. In particular, localized GMDs (LGMDs) can be high amplitude and can have an effect on scale sizes less than 100 km, making them hazardous to power grids and difficult to predict. In this study, we examine the ability of the Space Weather Modeling Framework (SWMF) to reproduce LGMDs in the 7 September 2017 event using both existing and new metrics to quantify the success of the model against observation. We show that the high-resolution SWMF can reproduce LGMDs driven by ionospheric sources, but struggles to reproduce LGMDs driven by substorm effects. We calculate the global maxima of the magnetic fluctuations to show instances when the SWMF captures LGMDs at the correct times but not the correct locations. To remedy these shortcomings we suggest model developments that will directly impact the ability of the SWMF to reproduce LGMDs, most importantly updating the ionospheric conductance calculation from empirical to physics-based. Studying the negative effects of space weather on Earth is a crucial part of protecting ourselves and our technology from solar phenomena. Fluctuations in Earth's magnetic field cause high-amplitude currents to run through ground conducting systems such as underwater cables and power lines, causing damage to the hardware. Being able to predict these magnetic field fluctuations is essential to protecting ourselves and our technology; however these effects can be highly localized, making them more difficult to predict. This study presents an analysis of a high-resolution model run of Earth's magnetic field that captures localized magnetic fluctuations on the ground. We use the model results to explore the causes of these fluctuations in the model and compare the results with observation. We show that the model can reproduce magnetic fluctuations associated with some dynamics in Earth's ionosphere, but misses some of the fluctuations caused by complex dynamics farther out in Earth's magnetic field. We also show that in some cases the model captures fluctuations at the correct times but not the correct locations. Finally we suggest model improvements that will directly improve our model's ability to reproduce and predict localized magnetic fluctuations. High resolution Space Weather Modeling Framework can reproduce Localized Geomagnetic Disturbances (localized geomagnetic disturbances s (LGMDs)) driven by ionospheric sources Magnetospheric disturbances associated with substorms appear in model, but effects do not translate to LGMDs on the ground Improvements to calculation of ionospheric conductance and capture of substorm dynamics in model needed to better predict LGMDs
  •  
21.
  • Welling, D. T., et al. (författare)
  • Recommendations for Next-Generation Ground Magnetic Perturbation Validation
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:12, s. 1912-1920
  • Tidskriftsartikel (refereegranskat)abstract
    • Data-model validation of ground magnetic perturbation forecasts, specifically of the time rate of change of surface magnetic field, dB/dt, is a critical task for model development and for mitigation of geomagnetically induced current effects. While a current, community-accepted standard for dB/dt validation exists (Pulkkinen et al., 2013), it has several limitations that prevent more complete understanding of model capability. This work presents recommendations from the International Forum for Space Weather Capabilities Assessment Ground Magnetic Perturbation Working Team for creating a next-generation validation suite. Four recommendations are made to address the existing suite: greatly expand the number of ground observatories used, expand the number of events included in the suite from six to eight, generate metrics as a function of magnetic local time, and generate metrics as a function of activity type. For each of these, implementation details are explored. Limitations and future considerations are also discussed.
  •  
22.
  • Werner, A. L. E., et al. (författare)
  • Modeling the Multiple CME Interaction Event on 6-9 September 2017 with WSA-ENLIL plus Cone
  • 2019
  • Ingår i: Space Weather. - : AMER GEOPHYSICAL UNION. - 1542-7390. ; 17:2, s. 357-369
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of coronal mass ejections (CMEs) erupted from the same active region between 4-6 September 2017. Later, on 6-9 September, two interplanetary (IP) shocks reached LE creating a complex and geoeffective plasma structure. To understand the processes leading up to the formation of the two shocks, we model the CMEs with the Wang-Sheeley-Arge (WSA)-ENLIL+Cone model. The first two CMEs merged already in the solar corona driving the first IP shock. In IP space, another fast CME presumably interacted with the flank of the preceding CMEs and caused the second shock detected in situ. By introducing a customized density enhancement factor (dcld) in the WSA-ENLIL+Cone model based on coronagraph image observations, the predicted arrival time of the first IP shock was drastically improved. When the dcld factor was tested on a well-defined single CME event from 12 July 2012 the shock arrival time saw similar improvement. These results suggest that the proposed approach may be an alternative to improve the forecast for fast and simple CMEs. Further, the slowly decelerating kilometric type II radio burst confirms that the properties of the background solar wind have been preconditioned by the passage of the first IP shock. This likely caused the last CME to experience insignificant deceleration and led to the early arrival of the second IP shock. This result emphasizes the need to take preconditioning of the IP medium into account when making forecasts of CMEs erupting in quick succession.
  •  
23.
  • Yamauchi, M, et al. (författare)
  • Ionospheric Response Observed by EISCAT During the 6–8 September 2017 Space Weather Event : Overview
  • 2018
  • Ingår i: Space Weather. - : John Wiley & Sons. - 1542-7390. ; 16:9, s. 1437-1450
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ionospheric plasma conditions observed by the EISCAT radars in Tromsø and on Svalbard, covering 68°–81° geomagnetic latitude, during 6–8 September 2017. This is a period when X2.2 and X9.3 X‐ray flares occurred, two interplanetary coronal mass ejections (ICMEs) arrived at the Earth accompanied by enhancements of MeV‐range energetic particle flux in both the solar wind (SEP event) and inner magnetosphere, and an AL < −2,000 substorm took place. (1) Both X flares caused enhancement of ionospheric electron density for about 10 min. The X9.3 flare also increased temperatures of both electrons and ions over 69°–75° geomagnetic latitude until the X‐ray flux decreased below the level of X‐class flares. However, the temperature was not enhanced after the previous X2.2 flare in the prenoon sector. (2) At around 75° geomagnetic latitude, the prenoon ion upflow flux slightly increased the day after the X9.3 flare, which is also after the first ICME and a SEP event, while no outstanding enhancement was found at the time of these X flares. (3) The upflow velocity sometimes decreased when the interplanetary magnetic field (IMF) turned southward. (4) Before the first ICME arrival after the SEP event under weak IMF with Bz ~0 nT, a substorm‐like expansion of the auroral arc signature took place without local geomagnetic signature near local midnight, while no notable change was observed after the ICME arrival. (5) AL reached <−2,000 nT only after the arrival of the second ICME with strongly southward IMF. Causality connections between the solar/solar wind event and the ionospheric responses remain unclear.
  •  
24.
  • Yordanova, Emiliya, et al. (författare)
  • Refined Modeling of Geoeffective Fast Halo CMEs During Solar Cycle 24
  • 2024
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The propagation of geoeffective fast halo coronal mass ejections (CMEs) from solar cycle 24 has been investigated using the European Heliospheric Forecasting Information Asset (EUHFORIA), ENLIL, Drag-Based Model (DBM) and Effective Acceleration Model (EAM) models. For an objective comparison, a unified set of a small sample of CME events with similar characteristics has been selected. The same CME kinematic parameters have been used as input in the propagation models to compare their predicted arrival times and the speed of the interplanetary (IP) shocks associated with the CMEs. The performance assessment has been based on the application of an identical set of metrics. First, the modeling of the events has been done with default input concerning the background solar wind, as would be used in operations. The obtained CME arrival forecast deviates from the observations at L1, with a general underestimation of the arrival time and overestimation of the impact speed (mean absolute error [MAE]: 9.8 ± 1.8–14.6 ± 2.3 hr and 178 ± 22–376 ± 54 km/s). To address this discrepancy, we refine the models by simple changes of the density ratio (dcld) between the CME and IP space in the numerical, and the IP drag (γ) in the analytical models. This approach resulted in a reduced MAE in the forecast for the arrival time of 8.6 ± 2.2–13.5 ± 2.2 hr and the impact speed of 51 ± 6–243 ± 45 km/s. In addition, we performed multi-CME runs to simulate potential interactions. This leads, to even larger uncertainties in the forecast. Based on this study we suggest simple adjustments in the operational settings for improving the forecast of fast halo CMEs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy