SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1559 1182 OR L773:0893 7648 "

Sökning: L773:1559 1182 OR L773:0893 7648

  • Resultat 1-25 av 109
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Watts, Michelle, et al. (författare)
  • MicroRNA-210 regulates dendritic morphology and behavioural flexibility in mice
  • 2021
  • Ingår i: Molecular Neurobiology. - Stockholm : Karolinska Institutet, Dept of Women's and Children's Health. - 0893-7648 .- 1559-1182.
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs are known to be critical regulators of neuronal plasticity. The highly-conserved, hypoxia- regulated microRNA-210 (miR-210) has been shown to be associated with long term memory in invertebrates and dysregulated in neurodevelopmental and neurodegenerative disease models. However, the role of miR-210 in mammalian neuronal function and cognitive behavior remains unexplored. Here we generated Nestin-cre driven miR-210 neuronal knockout mice to characterise miR-210 regulation and function using in vitro and in vivo methods. We identified miR-210 localisation throughout neuronal somas and dendritic processes and increased levels of mature miR- 210 in response to neural activity in vitro. Loss of miR-210 in neurons resulted in higher oxidative phosphorylation and ROS production following hypoxia and increased dendritic arbour density in hippocampal cultures. Additionally, miR-210 knockout mice displayed altered behavioral flexibility in rodent touchscreen tests, particularly during early reversal learning suggesting processes underlying updating of information and feedback were impacted. Our findings support a conserved, activity- dependent role for miR-210 in neuroplasticity and cognitive function.
  •  
2.
  • Akkuratov, Evgeny E., et al. (författare)
  • Ouabain Modulates the Functional Interaction Between Na,K-ATPase and NMDA Receptor.
  • 2020
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 57:10, s. 4018-4030
  • Tidskriftsartikel (refereegranskat)abstract
    • The N-methyl-D-aspartate (NMDA) receptor plays an essential role in glutamatergic transmission and synaptic plasticity and researchers are seeking for different modulators of NMDA receptor function. One possible mechanism for its regulation could be through adjacent membrane proteins. NMDA receptors coprecipitate with Na,K-ATPase, indicating a potential interaction of these two proteins. Ouabain, a mammalian cardiotonic steroid that specifically binds to Na,K-ATPase and affects its conformation, can protect from some toxic effects of NMDA receptor activation. Here we have examined whether NMDA receptor activity and downstream effects can be modulated by physiological ouabain concentrations. The spatial colocalization between NMDA receptors and the Na,K-ATPase catalytic subunits on dendrites of cultured rat hippocampal neurons was analyzed with super-resolution dSTORM microscopy. The functional interaction was analyzed with calcium imaging of single hippocampal neurons exposed to 10 μM NMDA in presence and absence of ouabain and by determination of the ouabain effect on NMDA receptor-dependent long-term potentiation. We show that NMDA receptors and the Na,K-ATPase catalytic subunits alpha1 and alpha3 exist in same protein complex and that ouabain in nanomolar concentration consistently reduces the calcium response to NMDA. Downregulation of the NMDA response is not associated with internalization of the receptor or with alterations in its state of Src phosphorylation. Ouabain in nanomolar concentration elicits a long-term potentiation response. Our findings suggest that ouabain binding to a fraction of Na,K-ATPase molecules that cluster with the NMDA receptors will, via a conformational effect on the NMDA receptors, cause moderate but consistent reduction of NMDA receptor response at synaptic activation.
  •  
3.
  •  
4.
  • Balleza-Tapia, H, et al. (författare)
  • Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na+/K+-ATPase
  • 2020
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 57:2, s. 1170-1185
  • Tidskriftsartikel (refereegranskat)abstract
    • The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
  •  
5.
  •  
6.
  • Bazov, Igor, 1973-, et al. (författare)
  • Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics.
  • 2018
  • Ingår i: Molecular Neurobiology. - : Springer. - 0893-7648 .- 1559-1182. ; 55:8, s. 7049-7061
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
  •  
7.
  •  
8.
  • Bieder, A, et al. (författare)
  • Dyslexia Candidate Gene and Ciliary Gene Expression Dynamics During Human Neuronal Differentiation
  • 2020
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 57:7, s. 2944-2958
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental dyslexia (DD) is a neurodevelopmental condition with complex genetic mechanisms. A number of candidate genes have been identified, some of which are linked to neuronal development and migration and to ciliary functions. However, expression and regulation of these genes in human brain development and neuronal differentiation remain uncharted. Here, we used human long-term self-renewing neuroepithelial stem (lt-NES, here termed NES) cells derived from human induced pluripotent stem cells to study neuronal differentiation in vitro. We characterized gene expression changes during differentiation by using RNA sequencing and validated dynamics for selected genes by qRT-PCR. Interestingly, we found that genes related to cilia were significantly enriched among upregulated genes during differentiation, including genes linked to ciliopathies with neurodevelopmental phenotypes. We confirmed the presence of primary cilia throughout neuronal differentiation. Focusing on dyslexia candidate genes, 33 out of 50 DD candidate genes were detected in NES cells by RNA sequencing, and seven candidate genes were upregulated during differentiation to neurons, including DYX1C1 (DNAAF4), a highly replicated DD candidate gene. Our results suggest a role of ciliary genes in differentiating neuronal cells and show that NES cells provide a relevant human neuronal model to study ciliary and DD candidate genes.
  •  
9.
  • Borroto-Escuela, Dasiel O., et al. (författare)
  • Acute Cocaine Enhances Dopamine D2R Recognition and Signaling and Counteracts D2R Internalization in Sigma1R-D2R Heteroreceptor Complexes
  • 2019
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 56:10, s. 7045-7055
  • Tidskriftsartikel (refereegranskat)abstract
    • The current study was performed to establish the actions of nanomolar concentrations of cocaine, not blocking the dopamine transporter, on dopamine D2 receptor (D2R)-sigma 1 receptor (delta 1R) heteroreceptor complexes and the D2R protomer recognition, signaling and internalization in cellular models. We report the existence of D2R-delta 1R heteroreceptor complexes in subcortical limbic areas as well as the dorsal striatum, with different distribution patterns using the in situ proximity ligation assay. Also, through BRET, these heteromers were demonstrated in HEK293 cells. Furthermore, saturation binding assay demonstrated that in membrane preparations of HEK293 cells coexpressing D2R and delta 1R, cocaine (1 nM) significantly increased the D2R B-max values over cells singly expressing D2R. CREB reporter luc-gene assay indicated that coexpressed delta 1R significantly reduced the potency of the D2R-like agonist quinpirole to inhibit via D2R activation the forskolin induced increase of the CREB signal. In contrast, the addition of 100 nM cocaine was found to markedly increase the quinpirole potency to inhibit the forskolin-induced increase of the CREB signal in the D2R-delta 1R cells. These events were associated with a marked reduction of cocaine-induced internalization of D2R protomers in D2R-delta 1R heteromer-containing cells vs D2R singly expressing cells as studied by means of confocal analysis of D2R-delta 1R trafficking and internalization. Overall, the formation of D2R-delta 1R heteromers enhanced the ability of cocaine to increase the D2R protomer function associated with a marked reduction of its internalization. The existence of D2R-delta 1R heteromers opens up a new understanding of the acute actions of cocaine.
  •  
10.
  • Borroto-Escuela, Dasiel O., et al. (författare)
  • Disruption of A2AR-D2R Heteroreceptor Complexes After A2AR Transmembrane 5 Peptide Administration Enhances Cocaine Self-Administration in Rats
  • 2018
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 55:8, s. 7038-7048
  • Tidskriftsartikel (refereegranskat)abstract
    • Antagonistic allosteric A2AR-D2R receptor-receptor interactions in heteroreceptor complexes counteract cocaine self-administration and cocaine seeking in rats as seen in biochemical and behavioral experiments. It was shown that the human A2AR transmembrane five (TM5) was part of the interface of the human A2AR-D2R receptor heteromer. In the current paper, the rat A2AR synthetic TM5 (synthTM5) peptide disrupts the A2AR-D2R heteroreceptor complex in HEK293 cells as shown by the bioluminescence resonance energy transfer method. Rat A2AR synthTM5 peptide, microinjected into the nucleus accumbens, produced a complete counteraction of the inhibitory effects of the A2AR agonist CGS21680 on cocaine self-administration. It was linked to a disappearance of the accumbal A2AR-D2R heteroreceptor complexes and the A2AR agonist induced inhibition of D2R recognition using proximity ligation assay and biochemical binding techniques. However, possible effects of the A2AR synthTM5 peptide on accumbal A2AR-D3R and A2AR-D4R heteroreceptor complexes remain to be excluded. Evidence is provided that accumbal A2AR-D2R-like heteroreceptor complexes with their antagonistic receptor-receptor interactions can be major targets for treatment of cocaine use disorder.
  •  
11.
  • Brehm, Nadine, et al. (författare)
  • A Genetic Mouse Model of Parkinson’s Disease Shows Involuntary Movements and Increased Postsynaptic Sensitivity to Apomorphine
  • 2015
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 52:3, s. 1152-1164
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpha-synuclein (SNCA) protein aggregation plays a causal role in Parkinson's disease (PD). The SNCA protein modulates neurotransmission via the SNAP receptor (SNARE) complex assembly and presynaptic vesicle trafficking. The striatal presynaptic dopamine deficit is alleviated by treatment with levodopa (L-DOPA), but postsynaptic plastic changes induced by this treatment lead to a development of involuntary movements (dyskinesia). While this process is currently modeled in rodents harboring neurotoxin-induced lesions of the nigrostriatal pathway, we have here explored the postsynaptic supersensitivity of dopamine receptor-mediated signaling in a genetic mouse model of early PD. To this end, we used mice with prion promoter-driven overexpression of A53T-SNCA in the nigrostriatal and corticostriatal projections. At a symptomatic age (18 months), mice were challenged with apomorphine (5 mg/kg s.c.) and examined using both behavioral and molecular assays. After the administration of apomorphine, A53T-transgenic mice showed more severe stereotypic and dystonic movements in comparison with wild-type controls. Molecular markers of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and dephosphorylation, and Fos messenger RNA (mRNA), were examined in striatal tissue at 30 and 100 min after apomorphine injection. At 30 min, wild-type and transgenic mice showed a similar induction of phosphorylated ERK1/2, Dusp1, and Dusp6 mRNA (two MAPK phosphatases). At the same time point, Fos mRNA was induced more strongly in mutant mice than in wild-type controls. At 100 min after apomorphine treatment, the induction of both Fos, Dusp1, and Dusp6 mRNA was significantly larger in mutant mice than wild-type controls. At this time point, apomorphine caused a reduction in phospho-ERK1/2 levels specifically in the transgenic mice. Our results document for the first time a disturbance of ERK1/2 signaling regulation associated with apomorphine-induced involuntary movements in a genetic mouse model of synucleinopathy. This mouse model will be useful to identify novel therapeutic targets that can counteract abnormal dopamine-dependent striatal plasticity during both prodromal and manifest stages of PD.
  •  
12.
  • Brown, Alana, et al. (författare)
  • Womens Brain Health: Midlife Ovarian Removal Affects Associative Memory
  • 2023
  • Ingår i: Molecular Neurobiology. - : SPRINGER. - 0893-7648 .- 1559-1182. ; 60:11, s. 6145-6159
  • Tidskriftsartikel (refereegranskat)abstract
    • Women with early bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) have greater Alzheimers disease (AD) risk than women in spontaneous/natural menopause (SM), but early biomarkers of this risk are not well-characterized. Considering associative memory deficits may presage preclinical AD, we wondered if one of the earliest changes might be in associative memory and whether younger women with BSO had changes similar to those observed in SM. Women with BSO (with and without 17 & beta;-estradiol replacement therapy (ERT)), their age-matched premenopausal controls (AMC), and older women in SM completed a functional magnetic resonance imaging face-name associative memory task shown to predict early AD. Brain activation during encoding was compared between groups: AMC (n=25), BSO no ERT (BSO; n=15), BSO+ERT (n=16), and SM without hormone therapy (n=16). Region-of-interest analyses revealed AMC did not contribute to functional group differences. BSO+ERT had higher hippocampal activation than BSO and SM. This hippocampal activation correlated positively with urinary metabolite levels of 17 & beta;-estradiol. Multivariate partial least squares analyses showed BSO+ERT had a different network-level activation pattern than BSO and SM. Thus, despite being approximately 10 years younger, women with BSO without ERT had similar brain function to those with SM, suggesting early 17 & beta;-estradiol loss may lead to an altered functional brain phenotype which could influence late-life AD risk, making face-name encoding a potential biomarker for midlife women with increased AD risk. Despite similarities in activation, BSO and SM groups showed opposite within-hippocampus connectivity, suggesting menopause type is an important consideration when assessing brain function.
  •  
13.
  •  
14.
  • Chang, Hong, et al. (författare)
  • Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1.
  • 2017
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 54:7, s. 5166-5176
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta=5.72×10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P=6.70×10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P=0.044) and educational attainment (P=0.0039), a "proxy phenotype" of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis.
  •  
15.
  • Chen, Meng, et al. (författare)
  • Increased Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice.
  • 2018
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 55:7, s. 5478-5489
  • Tidskriftsartikel (refereegranskat)abstract
    • Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIMSA/SA) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIMSA/SAastrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIMSA/SAastrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIMSA/SAneurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.
  •  
16.
  • Costa, João T., et al. (författare)
  • Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death
  • 2016
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 53:6, s. 3513-3527
  • Tidskriftsartikel (refereegranskat)abstract
    • GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system, and changes in GABAergic neurotransmission modulate the activity of neuronal networks. Gephyrin is a scaffold protein responsible for the traffic and synaptic anchoring of GABAA receptors (GABAAR); therefore, changes in gephyrin expression and oligomerization may affect the activity of GABAergic synapses. In this work, we investigated the changes in gephyrin protein levels during brain ischemia and in excitotoxic conditions, which may affect synaptic clustering of GABAAR. We found that gephyrin is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, as well as after intrahippocampal injection of kainate, giving rise to a stable cleavage product. Gephyrin cleavage was also observed in cultured hippocampal neurons subjected to transient oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, and after transient middle cerebral artery occlusion (MCAO) in mice, a model of focal brain ischemia. Furthermore, a truncated form of gephyrin decreased the synaptic clustering of the protein, reduced the synaptic pool of GABAAR containing γ2 subunits and upregulated OGD-induced cell death in hippocampal cultures. Our results show that excitotoxicity and brain ischemia downregulate full-length gephyrin with a concomitant generation of truncated products, which affect synaptic clustering of GABAAR and cell death.
  •  
17.
  •  
18.
  • de la Villarmois, Emilce, et al. (författare)
  • Pharmacological NOS-1 Inhibition Within the Hippocampus Prevented Expression of Cocaine Sensitization : Correlation with Reduced Synaptic Transmission
  • 2020
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 57:1, s. 450-460
  • Tidskriftsartikel (refereegranskat)abstract
    • Behavioral sensitization to psychostimulants hyperlocomotor effect is a useful model of addiction and craving. Particularly, cocaine sensitization in rats enhanced synaptic plasticity within the hippocampus, an important brain region for the associative learning processes underlying drug addiction. Nitric oxide (NO) is a neurotransmitter involved in both, hippocampal synaptic plasticity and cocaine sensitization. It has been previously demonstrated a key role of NOS-1/NO/sGC/cGMP signaling pathway in the development of cocaine sensitization and in the associated enhancement of hippocampal synaptic plasticity. The aim of the present investigation was to determine whether NOS-1 inhibition after development of cocaine sensitization was able to reverse it, and to characterize the involvement of the hippocampus in this phenomenon. Male Wistar rats were administered only with cocaine (15 mg/kg/day i.p.) for 5 days. Then, animals received 7-nitroindazole (NOS-1 inhibitor) either systemically for the next 5 days or a single intra-hippocampal administration. Development of sensitization and its expression after withdrawal were tested, as well as threshold for long-term potentiation in hippocampus, NOS-1, and CREB protein levels and gene expression. The results showed that NOS-1 protein levels and gene expression were increased only in sensitized animals as well as CREB gene expression. NOS-1 inhibition after sensitization reversed behavioral expression and the highest level of hippocampal synaptic plasticity. In conclusion, NO signaling within the hippocampus is critical for the development and expression of cocaine sensitization. Therefore, NOS-1 inhibition or NO signaling pathways interferences during short-term withdrawal after repeated cocaine administration may represent plausible pharmacological targets to prevent or reduce susceptibility to relapse.
  •  
19.
  • Di Martino, E, et al. (författare)
  • Defining a Time Window for Neuroprotection and Glia Modulation by Caffeine After Neonatal Hypoxia-Ischaemia
  • 2020
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 57:5, s. 2194-2205
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxic-ischemic (HI) brain injury remains an important cause of brain damage in neonates with potential life-long consequences. Caffeine, which is a competitive inhibitor of adenosine receptors, is commonly used as treatment for preterm apnoea in clinical settings. In the current study, we investigated the effects of caffeine given at 0 h, 6 h, 12 h or 24 h after HI in P10 mouse pups. Open field and rotarod behavioural tests were performed 2 weeks after injury, and brain morphology was then evaluated. Gene expression and immunohistological analyses were assessed in mice 1- and 5-day post-HI. A single dose of caffeine directly after HI resulted in a reduction of the lesion in the grey and white matter, judged by immunostaining of MAP2 and MBP, respectively, compared to PBS-treated controls. In addition, the number of amoeboid microglia and apoptotic cells, the area covered by astrogliosis, and the expression of pro-inflammatory cytokines were significantly decreased. Behavioural assessment after 2 weeks showed increased open-field activity after HI, and this was normalised if caffeine was administered immediately after the injury. Later administrations of caffeine did not change the outcomes when compared to the vehicle group. In conclusion, caffeine only yielded neuroprotection and immunomodulation in a neonatal model of brain hypoxia ischaemia if administered immediately after injury.
  •  
20.
  •  
21.
  • Feng, Lianyuan, et al. (författare)
  • TiO2-Nanowired Delivery of DL-3-n-butylphthalide (DL-NBP) Attenuates Blood-Brain Barrier Disruption, Brain Edema Formation, and Neuronal Damages Following Concussive Head Injury
  • 2018
  • Ingår i: Molecular Neurobiology. - : Humana Press. - 0893-7648 .- 1559-1182. ; 55:1, s. 350-358
  • Tidskriftsartikel (refereegranskat)abstract
    • DL-3-n-butylphthalide (DL-NBP) is one of the constituents of Chinese celery extract that is used to treat stroke, dementia, and ischemic diseases. However, its role in traumatic brain injury is less well known. In this investigation, neuroprotective effects of DL-NBP in concussive head injury (CHI) on brain pathology were explored in a rat model. CHI was inflicted in anesthetized rats by dropping a weight of 114.6 g from a height of 20 cm through a guide tube on the exposed right parietal bone inducing an impact of 0.224 N and allowed them to survive 4 to 24 h after the primary insult. DL-NBP was administered (40 or 60 mg/kg, i.p.) 2 and 4 h after injury in 8-h survival group and 8 and 12 h after trauma in 24-h survival group. In addition, TiO2-nanowired delivery of DL-NBP (20 or 40 mg/kg, i.p.) in 8 and 24 h CHI rats was also examined. Untreated CHI showed a progressive increase in blood-brain barrier (BBB) breakdown to Evans blue albumin (EBA) and radioiodine (I[131]-), edema formation, and neuronal injuries. The magnitude and intensity of these pathological changes were most marked in the left hemisphere. Treatment with DL-NBP significantly reduced brain pathology in CHI following 8 to 12 h at 40-mg dose. However, 60-mg dose is needed to thwart brain pathology at 24 h following CHI. On the other hand, TiO2-DL-NBP was effective in reducing brain damage up to 8 or 12 h using a 20-mg dose and only 40-mg dose was needed for neuroprotection in CHI at 24 h. These observations are the first to suggest that (i) DL-NBP is quite effective in reducing brain pathology and (ii) nanodelivery of DL-NBP has far more superior effects in CHI, not reported earlier.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Gao, Qi, et al. (författare)
  • The Association Between Branched-Chain Amino Acid Concentrations and the Risk of Autism Spectrum Disorder in Preschool-Aged Children
  • 2024
  • Ingår i: MOLECULAR NEUROBIOLOGY. - 0893-7648 .- 1559-1182. ; 61, s. 6031-6044
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have linked branched-chain amino acid (BCAA) metabolism disorders with autism spectrum disorder (ASD), but the results have been inconsistent. The purpose of this study was to explore the association between BCAA concentrations and the risk of ASD. A total of 313 participants were recruited from two tertiary referral hospitals from May 2018 to July 2021. Concentrations of BCAAs in dried blood spots were analyzed using liquid chromatography-tandem mass spectrometry-based analysis. Multivariate analyses and restricted cubic spline models were used to identify the association between BCAAs and the risk of ASD, and a nomogram was developed by using multivariate logistic regression and the risk was determined by receiver operating characteristic curve analysis and calibration curve analysis. Concentrations of total BCAA, valine, and leucine/isoleucine were higher in the ASD group, and all of them were positively and non-linearly associated with the risk of ASD even after adjusting for potential confounding factors such as age, gender, body mass index, and concentrations of BCAAs (P < 0.05). The nomogram integrating total BCAA and valine showed a good discriminant AUC value of 0.756 (95% CI 0.676-0.835). The model could yield net benefits across a reasonable range of risk thresholds. In the stratified analysis, the diagnostic ability of the model was more pronounced in children older than 3 years. We provide evidence that increased levels of BCAAs are associated with the risk of ASD, and the nomogram model of BCAAs presented here can serve as a marker for the early diagnosis of ASD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 109
Typ av publikation
tidskriftsartikel (104)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (104)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Sharma, Aruna (15)
Bazan, NG (14)
Sharma, Hari Shanker (9)
Blennow, Kaj, 1958 (4)
Winblad, B (4)
Zhu, Changlian, 1964 (4)
visa fler...
Lukiw, WJ (4)
Bazan, N (4)
Boylan, GB (3)
Murray, DM (3)
Hallberg, B (3)
Wieloch, Tadeusz (3)
Behbahani, H (3)
Fuxe, Kjell (3)
Borroto-Escuela, Das ... (3)
Ruscher, Karsten (3)
Chen, Y. (2)
Zhu, J. (2)
Mallet, J. (2)
Zetterberg, Henrik, ... (2)
Landén, Mikael, 1966 (2)
Bjorkhem, I (2)
Schiöth, Helgi B. (2)
Cichon, S (2)
Muller-Myhsok, B (2)
Nothen, MM (2)
Rietschel, M (2)
Martin, NG (2)
Ahearne, CE (2)
Forssberg, H (2)
Samuelsson, EB (2)
Cedazo-Minguez, A (2)
Wang, Xiaoyang, 1965 (2)
Carlsson, Jens (2)
Leboyer, M. (2)
Pekna, Marcela, 1966 (2)
Pekny, Milos, 1965 (2)
Wiklund, Lars (2)
Heijtz, RD (2)
Qian, Y (2)
Blomgren, K (2)
Li, Tao (2)
Larsson, SC (2)
Palacios-Pelaez, R (2)
Wydra, Karolina (2)
Romero Fernandez, Wi ... (2)
Filip, Malgorzata (2)
Narváez, Manuel (2)
Mateos, L (2)
Looney, AM (2)
visa färre...
Lärosäte
Karolinska Institutet (66)
Uppsala universitet (26)
Göteborgs universitet (18)
Lunds universitet (8)
Stockholms universitet (4)
Linköpings universitet (3)
visa fler...
Örebro universitet (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Mälardalens universitet (1)
visa färre...
Språk
Engelska (109)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (50)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy