SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1742 7061 "

Sökning: L773:1742 7061

  • Resultat 1-25 av 149
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Annelie, et al. (författare)
  • Increased matrix stiffness enhances pro-tumorigenic traits in a physiologically relevant breast tissue- monocyte 3D model
  • 2024
  • Ingår i: Acta Biomaterialia. - : ELSEVIER SCI LTD. - 1742-7061 .- 1878-7568. ; 178, s. 160-169
  • Tidskriftsartikel (refereegranskat)abstract
    • High mammographic density, associated with increased tissue stiffness, is a strong risk factor for breast cancer per se . In postmenopausal women there is no differences in the occurrence of ductal carcinoma in situ (DCIS) depending on breast density. Preliminary data suggest that dense breast tissue is associated with a pro -inflammatory microenvironment including infiltrating monocytes. However, the underlying mechanism(s) remains largely unknown. A major roadblock to understanding this risk factor is the lack of relevant in vitro models. A biologically relevant 3D model with tunable stiffness was developed by cross -linking hyaluronic acid. Breast cancer cells were cultured with and without freshly isolated human monocytes. In a unique clinical setting, extracellular proteins were sampled using microdialysis in situ from women with various breast densities. We show that tissue stiffness resembling high mammographic density increases the attachment of monocytes to the cancer cells, increase the expression of adhesion molecules and epithelia-mesenchymal-transition proteins in estrogen receptor (ER) positive breast cancer. Increased tissue stiffness results in increased secretion of similar pro-tumorigenic proteins as those found in human dense breast tissue including inflammatory cytokines, proteases, and growth factors. ER negative breast cancer cells were mostly unaffected suggesting that diverse cancer cell phenotypes may respond differently to tissue stiffness. We introduce a biological relevant model with tunable stiffness that resembles the densities found in normal breast tissue in women. The model will be key for further mechanistic studies. Additionally, our data revealed several pro-tumorigenic pathways that may be exploited for prevention and therapy against breast cancer.
  •  
2.
  • Ahn, Jae-Il, et al. (författare)
  • Crosslinked collagen hydrogels as corneal implants: Effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers
  • 2013
  • Ingår i: Acta Biomaterialia. - : Elsevier. - 1742-7061 .- 1878-7568. ; 9:8, s. 7796-7805
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that recombinant human collagen can be crosslinked with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) to fabricate transparent hydrogels possessing the shape and dimensions of the human cornea. These corneal implants have been tested in a Phase I human clinical study. Although these hydrogels successfully promoted corneal tissue and nerve regeneration, the gelling kinetics were difficult to control during the manufacture of the implants. An alternative carbodiimide capable of producing hydrogels of similar characteristics as EDC in terms of strength and biocompatibility, but with a longer gelation time would be a desirable alternative. Here, we compared the crosslinking kinetics and properties of hydrogels crosslinked with a sterically bulky carbodiimide, N-Cyclohexyl-N-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate (CMC), with that of EDC. CMC crosslinking was possible at ambient temperature whereas the EDC reaction was too rapid to control and had to be carried out at low temperatures. The highest tensile strength obtained using optimized formulations were equivalent, although CMC crosslinked hydrogels were found to be stiffer. The collagenase resistance of CMC crosslinked hydrogels was superior to that of EDC crosslinked hydrogels while biocompatibility was similar. We are also able to substitute porcine collagen with recombinant human collagen and show that the in vivo performance of both resulting hydrogels as full-thickness corneal implants is comparable in a mouse model of an orthotopic corneal graft. In conclusion, CMC is a viable alternative to EDC as a crosslinker for collagen-based biomaterials for use as corneal implants, and potentially for use in other tissue engineering applications.
  •  
3.
  •  
4.
  • Alloisio, Marta, et al. (författare)
  • Fracture of porcine aorta-Part 1 : symconCT fracture testing and DIC
  • 2023
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 167, s. 147-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue failure and damage are inherent parts of vascular diseases and tightly linked to clinical events. Additionally, experimental set-ups designed to study classical engineering materials are suboptimal in the exploration of vessel wall fracture properties. The classical Compact Tension (CT) test was augmented to enable stable fracture propagation, resulting in the symmetry-constraint Compact Tension (symconCT) test, a suitable set-up for fracture testing of vascular tissue. The test was combined with Digital Image Correlation (DIC) to study tissue fracture in 45 porcine aorta specimens. Test specimens were loaded in axial and circumferential directions in a physiological solution at 37 & DEG;C. Loading the aortic vessel wall in the axial direction resulted in mode I tissue failure and a fracture path aligned with the circumferential vessel direction. Circumferential loading resulted in mode I-dominated failure with multiple deflections of the fracture path. The aorta ruptured at a principal Green-Lagrange strain of approximately 0.7, and strain rate peaks that develop ahead of the crack tip reached nearly 400 times the strain rate on average over the test specimen. It required approximately 70% more external work to fracture the aorta by circumferential than axial load; normalised with the fracture surface, similar energy levels are, however, observed. The symconCT test resulted in a stable fracture propagation, which, combined with DIC, provided a set-up for the in-depth analysis of vascular tissue failure. The high strain rates ahead of the crack tip indicate the significance of rate effects in the constitutive description of vascular tissue fracture.
  •  
5.
  • Alloisio, Marta, et al. (författare)
  • Fracture of porcine aorta. Part 2: FEM modelling and inverse parameter identification
  • 2023
  • Ingår i: Acta Biomaterialia. - : Acta Materialia Inc. - 1742-7061 .- 1878-7568. ; 167, s. 158-170
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanics of vascular tissue, particularly its fracture properties, are crucial in the onset and progression of vascular diseases. Vascular tissue properties are complex, and the identification of fracture mechanical properties relies on robust and efficient numerical tools. In this study, we propose a parameter identification pipeline to extract tissue properties from force-displacement and digital image correlation (DIC) data. The data has been acquired by symconCT testing porcine aorta wall specimens. Vascular tissue is modelled as a non-linear viscoelastic isotropic solid, and an isotropic cohesive zone model describes tissue fracture. The model closely replicated the experimental observations and identified the fracture energies of 1.57±0.82 kJ m−2 and 0.96±0.34 kJ m−2 for rupturing the porcine aortic media along the circumferential and axial directions, respectively. The identified strength was always below 350 kPa, a value significantly lower than identified through classical protocols, such as simple tension, and sheds new light on the resilience of the aorta. Further refinements to the model, such as considering rate effects in the fracture process zone and tissue anisotropy, could have improved the simulation results. Statement of significance: This paper identified porcine aorta's biomechanical properties using data acquired through a previously developed experimental protocol, the symmetry-constraint compact tension test. An implicit finite element method model mimicked the test, and a two-step approach identified the material's elastic and fracture properties directly from force-displacement curves and digital image correlation-based strain measurements. Our findings show a lower strength of the abdominal aorta as compared to the literature, which may have significant implications for the clinical evaluation of the risk of aortic rupture.
  •  
6.
  • Altgärde, Noomi, 1983, et al. (författare)
  • Probing the biofunctionality of biotinylated hyaluronan and chondroitin sulfate by hyaluronidase degradation and aggrecan interaction
  • 2013
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 9:9, s. 8158-8166
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular interactions involving glycosaminoglycans (GAGs) are important for biological processes in the extracellular matrix (ECM) and at cell surfaces, and also in biotechnological applications. Enzymes in the ECM constantly modulate the molecular structure and the amount of GAGs in our tissues. Specifically, the changeable sulfation patterns of many GAGs are expected to be important in interactions with proteins. Biotinylation is a convenient method for immobilizing molecules to surfaces. When studying interactions at the molecular, cell and tissue level, the native properties of the immobilized molecule, i.e. its biofunctionality, need to be retained upon immobilization. Here, the GAGs hyaluronan (HA) and chondroitin sulfate (CS), and synthetically sulfated derivatives of the two, were immobilized using biotin-streptavidin binding. The degree of biotinylation and the placement of biotin groups (end-on/side-on) were varied. The introduction of biotin groups could have unwanted effects on the studied molecule, but this aspect that is not always straightforward to evaluate. Hyaluronidase, an enzyme that degrades HA and CS in the ECM, was investigated as a probe to evaluate the biofunctionality of the immobilized GAGs, using both quartz crystal microbalance and high-performance liquid chromatography. Our results showed that end-on biotinylated HA was efficiently degraded by hyaluronidase, whereas already a low degree of side-on biotinylation destroyed the degrading ability of the enzyme. Synthetically introduced sulfate groups also had this effect. Hence hyaluronidase degradation is a cheap and easy way to investigate how molecular function is influenced by the introduced functional groups. Binding experiments with the proteoglycan aggrecan emphasized the influence of protein size and surface orientation of the GAGs for in-depth studies of GAG behavior.
  •  
7.
  • Aminlashgari, Nina, et al. (författare)
  • Degradation profile and preliminary clinical testing of a resorbable device for ligation of blood vessels
  • 2013
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 9:6, s. 6898-904
  • Tidskriftsartikel (refereegranskat)abstract
    • A resorbable device for ligation of blood vessels was developed and tested in vitro to reveal the degradation profile of the device and to predict the clinical performance in terms of adequate mechanical support during a healing period of I week. In addition, preliminary clinical testing was performed that showed complete hemostasis and good tissue grip of renal arteries in five pigs. The device was made by injection molding of poly(glycolide-co-trimethylene carbonate) triblock copolymer, and it consisted of a case with a locking mechanism connected to a partly perforated flexible band. A hydrolytic degradation study was carried out for 7, 30 and 60 days in water and buffer medium, following the changes in mass, water absorption, pH and mechanical properties. A new rapid matrix-free laser desorption ionization-mass spectrometry (LDI-MS) method was developed for direct screening of degradation products released into the degradation medium. The combination of LDI-MS and electrospray ionization-mass spectrometry analyses enabled the comparison of the degradation product patterns in water and buffer medium. The identified degradation products were rich in trimethylene carbonate units, indicating preferential hydrolysis of amorphous regions where trimethylene units are located. The crystallinity of the material was doubled after 60 days of hydrolysis, additionally confirming the preferential hydrolysis of trimethylene carbonate units and the enrichment of glycolide units in the remaining solid matrix. The mechanical performance of the perforated band was followed for the first week of hydrolysis and the results suggest that sufficient strength is retained during the healing time of the blood vessels.
  •  
8.
  • Asif, Sana, et al. (författare)
  • Heparinization of cell surfaces with short peptide-conjugated PEG-lipid regulates thromboinflammation in transplantation of human MSCs and hepatocytes
  • 2016
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 35, s. 194-205
  • Tidskriftsartikel (refereegranskat)abstract
    • Infusion of therapeutic cells into humans is associated with immune responses, including thromboinflammation, which result in a large loss of transplanted cells\ To address these problems, heparinization of the cell surfaces was achieved by a cell-surface modification technique using polyethylene glycol conjugated phospholipid (PEG-lipid) derivatives. A short heparin-binding peptide was conjugated to the PEG-lipid for immobilization of heparin conjugates on the surface of human mesenchymal stem cells (hMSCs) and human hepatocytes. Here three kinds of heparin-binding peptides were used for immobilizing heparin conjugates and examined for the antithrombogenic effects on the cell surface. The heparinized cells were incubated in human whole blood to evaluate their hemocompatibility by measuring blood parameters such as platelet count, coagulation markers, complement markers, and Factor Xa activity. We found that one of the heparin-binding peptides did not show cytotoxicity after the immobilization with heparin conjugates. The degree of binding of the heparin conjugates on the cell surface (analyzed by flow cytometer) depended on the ratio of the active peptide to control peptide. For both human MSCs and hepatocytes in whole-blood experiments, no platelet aggregation was seen in the heparin conjugate-immobilized cell group vs. the controls (non-coated cells or control peptide). Also, the levels of thrombin-antithrombin complex (TAT), C3a, and sC5b-9 were significantly lower than those of the controls, indicating a lower activation of coagulation and complement. Factor Xa analysis indicated that the heparin conjugate was still active on the cell surface at 24 h post-coating. It is possible to immobilize heparin conjugates onto hMSC and human hepatocyte surfaces and thereby protect the cell surfaces from damaging thromboinflammation. Statement of Signigficance We present a promising approach to enhance the biocompatibility of therapeutic cells. Here we used short peptide-conjugated PEG-lipid for cell surface modification and heparin conjugates for the coating of human hepatocytes and MSCs. We screened the short peptides to find higher affinity for heparinization of cell surface and performed hemocompatibility assay of heparinized human hepatocytes and human MSCs in human whole blood. Using heparin-binding peptide with higher affinity, not only coagulation activation but also complement activation was significantly suppressed. Thus, it was possible to protect human hepatocytes and human MSCs from the attack of thromboinflammatory activation, which can contribute to the improvement graft survival. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
9.
  • Atefyekta, Saba, 1987, et al. (författare)
  • Antibiofilm elastin-like polypeptide coatings: functionality, stability, and selectivity
  • 2019
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 83, s. 245-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial peptides (AMPS) are currently receiving interest as an alternative to conventional antibiotics to treat biomaterial-associated infection. However, the inherent instability of such peptides often limits their efficacy in intended clinical applications. Covalent immobilization of AMPs to surfaces is one strategy to increase the long-term stability and minimize the toxicity. In this work, an antimicrobial peptide, RRPRPRPRPWWWW-NH2 (RRP9W4N), was used to modify elastin-like polypeptide (ELP) surface coatings containing cell-adhesive peptide domains (RGD) using covalent chemistry. The AMP retained its antibacterial activity against Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa when covalently bonded to ELP surfaces. Simultaneously, the AMP functionalization had insignificant effect on the viability, function, and differentiation of human osteosarcoma MG63 cells and human mesenchymal stem cells (hMSCs). Furthermore, stability of the immobilized AMP in human blood serum was investigated, and the results suggested that the AMP preserved its antibacterial activity up to 24 h. Combined, the results show that covalently attached AMPs onto RGD-containing ELP are an excellent candidate as an antimicrobial coating for medical devices.
  •  
10.
  • Atif, Abdul Raouf, 1996-, et al. (författare)
  • A microfluidics-based method for culturing osteoblasts on biomimetic hydroxyapatite
  • 2021
  • Ingår i: Acta Biomaterialia. - : Elsevier. - 1742-7061 .- 1878-7568. ; 127, s. 327-337
  • Tidskriftsartikel (refereegranskat)abstract
    • The reliability of conventional cell culture studies to evaluate biomaterials is often questioned, as in vitro outcomes may contradict results obtained through in vivo assays. Microfluidics technology has the potential to reproduce complex physiological conditions by allowing for fine control of microscale features such as cell confinement and flow rate. Having a continuous flow during cell culture is especially advantageous for bioactive biomaterials such as calcium-deficient hydroxyapatite (HA), which may otherwise alter medium composition and jeopardize cell viability, potentially producing false negative results in vitro. In this work, HA was integrated into a microfluidics-based platform (HA-on-chip) and the effect of varied flow rates (2, 8 and 14 µl/min, corresponding to 0.002, 0.008 and 0.014 dyn/cm2, respectively) was evaluated. A HA sample placed in a well plate (HA-static) was included as a control. While substantial calcium depletion and phosphate release occurred in static conditions, the concentration of ions in HA-on-chip samples remained similar to those of fresh medium, particularly at higher flow rates. Pre-osteoblast-like cells (MC3T3-E1) exhibited a significantly higher degree of proliferation on HA-on-chip (8 μl/min flow rate) as compared to HA-static. However, cell differentiation, analysed by alkaline phosphatase (ALP) activity, showed low values in both conditions. This study indicates that cells respond differently when cultured on HA under flow compared to static conditions, which indicates the need for more physiologically relevant methods to increase the predictive value of in vitro studies used to evaluate biomaterials.
  •  
11.
  • Barba, Albert, et al. (författare)
  • Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture
  • 2018
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 79, s. 135-147
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an urgent need of synthetic bone grafts with enhanced osteogenic capacity. This can be achieved by combining biomaterials with exogenous growth factors, which however can have numerous undesired side effects, but also by tuning the intrinsic biomaterial properties. In a previous study, we showed the synergistic effect of nanostructure and pore architecture of biomimetic calcium deficient hydroxyapatite (CDHA) scaffolds in enhancing osteoinduction, i.e. fostering the differentiation of mesenchymal stem cells to bone forming cells. This was demonstrated by assessing bone formation after implanting the scaffolds intramuscularly. The present study goes one step forward, since it analyzes the effect of the geometrical features of the same CDHA scaffolds, obtained either by 3D-printing or by foaming, on the osteogenic potential and resorption behaviour in a bony environment. After 6 and 12 weeks of intraosseous implantation, both bone formation and material degradation had been drastically affected by the macropore architecture of the scaffolds. Whereas nanostructured CDHA was shown to be highly osteoconductive both in the robocast and foamed scaffolds, a superior osteogenic capacity was observed in the foamed scaffolds, which was associated with their higher intrinsic osteoinductive potential. Moreover, they showed a significantly higher cell-mediated degradation than the robocast constructs, with a simultaneous and progressive replacement of the scaffold by new bone. In conclusion, these results demonstrate that the control of macropore architecture is a crucial parameter in the design of synthetic bone grafts, which allows fostering both material degradation and new bone formation. Statement of Significance 3D-printing technologies open new perspectives for the design of patient-specific bone grafts, since they allow customizing the external shape together with the internal architecture of implants. In this respect, it is important to design the appropriate pore geometry to maximize the bone healing capacity of these implants. The present study analyses the effect of pore architecture of nanostructured hydroxyapatite scaffolds, obtained either by 3D-printing or foaming, on the osteogenic potential and scaffold resorption in an in vivo model. While nanostructured hydroxyapatite showed excellent osteoconductive properties irrespective of pore geometry, we demonstrated that the spherical, concave macropores of foamed scaffolds significantly promoted both material resorption and bone regeneration compared to the 3D-printed scaffolds with orthogonal-patterned struts and therefore prismatic, convex macropores.
  •  
12.
  • Berlind, Torun, 1965-, et al. (författare)
  • Protein adsorption on thin films of carbon and carbon nitride monitored with in situ ellipsometry.
  • 2011
  • Ingår i: Acta biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 7:3, s. 1369-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin films of amorphous carbon and amorphous, graphitic and fullerene-like carbon nitride were deposited by reactive magnetron sputtering and optically characterized with spectroscopic ellipsometry. Complementary studies using scanning electron microscopy and atomic force microscopy were performed. The films were exposed to human serum albumin (HSA) and the adsorption was monitored in situ using dynamic ellipsometry. From the ellipsometric data the adsorbed amount of proteins was quantified in terms of surface mass density using de Feijter's model. The results indicate larger adsorption of proteins onto the amorphous films compared to the films with a more textured structure. Complementary studies with 125I-labeled HSA showed an apparent protein adsorption up to six times larger compared to the ellipsometry measurement. In addition, the four types of films were incubated in blood plasma followed by exposure to anti-fibrinogen, anti-HMWK or anti-C3c, revealing the materials' response to complement and contact activation. The amorphous and graphitic carbon nitride exhibit rather high immune activity compared to a titanium reference, whereas the amorphous carbon and the fullerene-like CNx show less immune complement deposition. Compared to the reference, all films exhibit indications of a stronger ability to initiate the intrinsic pathway of coagulation. Finally, the surfaces' bone-bonding ability was investigated by examination of their ability to form calcium phosphate crystals in a simulated body fluid, with a-CNx depositing most calcium phosphate after 21 days of incubation.
  •  
13.
  • Berns, E. J., et al. (författare)
  • A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells
  • 2016
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061. ; 37, s. 50-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomimetic materials that display natural bioactive signals derived from extracellular matrix molecules like laminin and fibronectin hold promise for promoting regeneration of the nervous system. In this work, we investigated a biomimetic peptide amphiphile (PA) presenting a peptide derived from the extracellular glycoprotein tenascin-C, known to promote neurite outgrowth through interaction with beta 1 integrin. The tenascin-C mimetic PA (TN-C PA) was found to self-assemble into supramolecular nanofibers and was incorporated through co-assembly into PA gels formed by highly aligned nanofibers. TN-C PA content in these gels increased the length and number of neurites produced from neurons differentiated from encapsulated P19 cells. Furthermore, gels containing TN-C PA were found to increase migration of cells out of neurospheres cultured on gel coatings. These bioactive gels could serve as artificial matrix therapies in regions of neuronal loss to guide neural stem cells and promote through biochemical cues neurite extension after differentiation. One example of an important target would be their use as biomaterial therapies in spinal cord injury. Tenascin-C is an important extracellular matrix molecule in the nervous system and has been shown to play a role in regenerating the spinal cord after injury and guiding neural progenitor cells during brain development, however, minimal research has been reported exploring the use of biomimetic biomaterials of tenascin-C. In this work, we describe a selfassembling biomaterial system in which peptide amphiphiles present a peptide derived from tenascin-C that promotes neurite outgrowth. Encapsulation of neurons in hydrogels of aligned nanofibers formed by tenascin-C-mimetic peptide amphiphiles resulted in enhanced neurite outgrowth. Additionally, these peptide amphiphiles promoted migration of neural progenitor cells cultured on nanofiber coatings. Tenascin-C biomimetic biomaterials such as the one described here have significant potential in neuroregenerative medicine.
  •  
14.
  • Björses, Katarina, et al. (författare)
  • In vitro and in vivo evaluation of chemically modified degradable starch microspheres for topical haemostasis
  • 2011
  • Ingår i: ACTA BIOMATERIALIA. - : Elsevier Science B.V. Amsterdam. - 1742-7061 .- 1878-7568. ; 7:6, s. 2558-2565
  • Tidskriftsartikel (refereegranskat)abstract
    • Degradable starch microspheres (DSMs) are starch chains cross-linked with epichlorhydrin, forming glycerol-ether links. DSMs have been used for many years for temporary vascular occlusion and drug delivery in treatment of malignancies. They are also approved and used for topical haemostasis by absorbing excess fluid from the blood and concentrating endogenous coagulation factors, thereby facilitating haemostasis. This mechanism of action is not sufficient for larger bleedings in current chemical formulations of DSMs, and modification of DSMs to trigger activation of platelets or coagulation would be required for use in such applications. Chemical modifications of DSMs with N-octenyl succinic anhydride, chloroacetic acid, acetic anhydride, diethylaminoethyl chloride and ellagic acid were performed and evaluated in vitro with thrombin generation and platelet adhesion tests, and in vivo using an experimental renal bleeding model in rat. DSMs modified to activate platelets in vitro were superior in haemostatic capacity in vivo. Further studies with non-toxic substances are warranted to confirm these results and develop the DSM as a more effective topical haemostatic agent.
  •  
15.
  • Borde, Annika, 1979, et al. (författare)
  • Increased water transport in PDMS silicone films by addition of excipients
  • 2012
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 8:2, s. 579-588
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of new adhesive wound care products intended for an application over a prolonged time requires good water transporting properties of the adhesive for the maintenance of a suitable environment around the wound. The ability of polydimethylsiloxane (PDMS)-based silicone films to transport water has led to its use in skin pressure-sensitive adhesives and it would be advantageous to find ways for controlling or increasing water transport across PDMS films in order to be able to develop improved skin adhesives. In this study we present a way to increase water transport in such films by the addition of hydrophilic excipients. Three hydrophilic additives, highly water-soluble sucrose and the two superabsorbent polymers (SAP) Carbopol® and Pemulen™, were investigated. The effect of the excipients was characterized by water transport studies, swelling tests, scanning electron microscopy imaging and confocal microscopy. The cross-linked polymers, primarily Pemulen™, were efficient water transport enhancers, whereas sucrose did not show any effect. The effect of the additives seemed to correlate with their water binding capacity. For SAPs the formation of a percolating structure by swollen polymer was also suggested, which enhances water penetration by the higher volume fraction of areas with a higher diffusion constant (swollen SAP), leading to a faster transport through the entire film. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
16.
  • Borges, Ana C., et al. (författare)
  • Nanofibrillated cellulose composite hydrogel for the replacement of the Nucleus Pulposus
  • 2011
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 7:9, s. 3412-3421
  • Tidskriftsartikel (refereegranskat)abstract
    • The swelling and compressive mechanical behavior as well as the morphology and biocompatibility of composite hydrogels based on Tween® 20 trimethacrylate (T3), N-vinyl-2-pyrrolidone (NVP) and nanofibrillated cellulose (NFC) were assessed in the present study. The chemical structure of T3 was verified by FTIR and 1H NMR and the degree of substitution (DS) was found to be around 3. Swelling ratios of neat hydrogels composed of different concentrations of T3 and NVP were found to range from 1.5 to 5.7 with decreasing concentration of T3. Various concentrations of cellulose nanofibrils (0.2 to 1.6 wt%) were then used to produce composite hydrogels that showed lower swelling ratios than neat ones for a given T3 concentration. Neat and composite hydrogels exhibited typical non-linear response under compression. All composite hydrogels showed an increase in elastic modulus compared to neat hydrogel of about 3 to 8-fold, reaching 18 kPa at 0% strain and 62 kPa at 20% strain for the hydrogel with the highest NFC content. All hydrogels presented a porous and homogeneous structure, with interconnected pore cells of around 100 nm in diameter. The hydrogels are biocompatible. The results of this study demonstrate that composite hydrogels reinforced with NFC may be viable as nucleus pulposus implant due to their adequate swelling ratio that may restore annulus fibrosus loading and their increased mechanical properties that could possibly restore the height of intervertebral discs.
  •  
17.
  • Brammer, Karla S., et al. (författare)
  • Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface
  • 2009
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 5:8, s. 3215-3223
  • Tidskriftsartikel (refereegranskat)abstract
    • The titanium dioxide (TiO2) nanotube surface enables significantly accelerated osteoblast adhesion and exhibits strong bonding with bone. We prepared various sizes (30-100 nm diameter) of titanium dioxide (TiO2) nanotubes on titanium substrates by anodization and investigated the osteoblast cellular behavior in response to these different nanotube sizes. The unique and striking result of this study is that a change in osteoblast behavior is obtained in a relatively narrow range of nanotube dimensions, with small diameter (similar to 30 nm) nanotubes promoting the highest degree of osteoblast adhesion, while larger diameter (70-100 nm) nanotubes elicit a lower population of cells with extremely elongated cellular morphology and much higher alkaline phosphatase levels. Increased elongation of nuclei was also observed with larger diameter nanotubes. By controlling the nanotopography, large diameter nanotubes, in the similar to 100 min regime, induced extremely elongated cellular shapes, with an aspect ratio of 11:1, which resulted in substantially enhanced up-regulation of alkaline phosphatase activity, suggesting greater bone-forming ability than nanotubes with smaller diameters. Such nanotube structures, already being a strongly osseointegrating implant material, offer encouraging implications for the development and optimization of novel orthopedics-related treatments with precise control toward desired cell and bone growth behavior. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
18.
  • Brash, John L., et al. (författare)
  • The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity
  • 2019
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 94, s. 11-24
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Acta Materialia Inc. The adsorption of proteins is the initiating event in the processes occurring when blood contacts a “foreign” surface in a medical device, leading inevitably to thrombus formation. Knowledge of protein adsorption in this context has accumulated over many years but remains fragmentary and incomplete. Moreover, the significance and relevance of the information for blood compatibility are not entirely agreed upon in the biomaterials research community. In this review, protein adsorption from blood is discussed under the headings “agreed upon” and “not agreed upon or not known” with respect to: protein layer composition, effects on coagulation and complement activation, effects on platelet adhesion and activation, protein conformational change and denaturation, prevention of nonspecific protein adsorption, and controlling/tailoring the protein layer composition. Statement of Significance: This paper is part 2 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
  •  
19.
  • Cai, Yixiao, et al. (författare)
  • Strategy towards independent electrical stimulation from cochlear implants : Guided auditory neuron growth on topographically modified nanocrystalline diamond
  • 2016
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 31, s. 211-220
  • Tidskriftsartikel (refereegranskat)abstract
    • Cochlear implants (CI) have been used for several decades to treat patients with profound hearing loss. Nevertheless, results vary between individuals, and fine hearing is generally poor due to the lack of discrete neural stimulation from the individual receptor hair cells. A major problem is the deliverance of independent stimulation signals to individual auditory neurons. Fine hearing requires significantly more stimulation contacts with intimate neuron/electrode interphases from ordered axonal re-growth, something current CI technology cannot provide.Here, we demonstrate the potential application of micro-textured nanocrystalline diamond (NCD) surfaces on CI electrode arrays. Such textured NCD surfaces consist of micrometer-sized nail-head-shaped pillars (size 5 5 lm2) made with sequences of micro/nano-fabrication processes, including sputtering, photolithography and plasma etching.The results show that human and murine inner-ear ganglion neurites and, potentially, neural progenitor cells can attach to patterned NCD surfaces without an extracellular matrix coating. Microscopic methods revealed adhesion and neural growth, specifically along the nail-head-shaped NCD pillars in an ordered manner, rather than in non-textured areas. This pattern was established when the inter-NCD pillar distance varied between 4 and 9 lm.The findings demonstrate that regenerating auditory neurons show a strong affinity to the NCD pillars, and the technique could be used for neural guidance and the creation of new neural networks. Together with the NCD’s unique anti-bacterial and electrical properties, patterned NCD surfaces could provide designed neural/electrode interfaces to create independent electrical stimulation signals in CI electrode arrays for the neural population.
  •  
20.
  • Canal, Cristina, et al. (författare)
  • Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements
  • 2013
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 9:9, s. 8403-8412
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium phosphate cements (CPCs) have great potential as carriers for controlled release and vectoring of drugs in the skeletal system. However, a lot of work still has to be done in order to obtain reproducible and predictable release kinetics. A particular aspect that adds complexity to these materials is that they cannot be considered as stable matrices, since their microstructure evolves during the setting reaction.The aims of the present work were to analyze the effect of the microstructural evolution of the CPC during the setting reaction on the release kinetics of the antibiotic doxycycline hyclate and to assess the effect of the antibiotic on the microstructural development of the CPC. The incorporation of the drug in the CPC modified the textural and microstructural properties of the cements by acting as a nucleating agent for the heterogeneous precipitation of hydroxyapatite crystals, but did not affect its antibacterial activity. In vitro release experiments were carried out on readily prepared cements (fresh CPCs), and compared to those of pre-set CPCs. No burst release was found in any formulation. A marked difference in release kinetics was found at the initial stages; the evolving microstructure of fresh CPCs led to a two-step release. Initially, when the carrier was merely a suspension of a-TCP particles in water, a faster release was recorded, which rapidly evolved to a zero-order release. In contrast, pre-set CPCs released doxycycline following non-Fickian diffusion. The final release percentage was related to the total porosity and entrance pore size of each biomaterial.
  •  
21.
  • Cann, Sophie Le, et al. (författare)
  • Spatio-temporal evolution of hydroxyapatite crystal thickness at the bone-implant interface
  • 2020
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 116, s. 391-399
  • Tidskriftsartikel (refereegranskat)abstract
    • A better understanding of bone nanostructure around the bone-implant interface is essential to improve longevity of clinical implants and decrease failure risks. This study investigates the spatio-temporal evolution of mineral crystal thickness and plate orientation in newly formed bone around the surface of a metallic implant. Standardized coin-shaped titanium implants designed with a bone chamber were inserted into rabbit tibiae for 7 and 13 weeks. Scanning measurements with micro-focused small-angle X-ray scattering (SAXS) were carried out on newly formed bone close to the implant and in control mature cortical bone. Mineral crystals were thinner close to the implant (1.8 ± 0.45 nm at 7 weeks and 2.4 ± 0.57 nm at 13 weeks) than in the control mature bone tissue (2.5 ± 0.21 nm at 7 weeks and 2.8 ± 0.35 nm at 13 weeks), with increasing thickness over healing time (+30 % in 6 weeks). These results are explained by younger bone close to the implant, which matures during osseointegration. Thinner mineral crystals parallel to the implant surface within the first 100 µm close to the implant indicate that the implant affects bone ultrastructure close to the implant, potentially due to heterogeneous interfacial stresses, and suggest a longer maturation process of bone tissue and difficulty in binding to the metal. The bone growth kinetics within the bone chamber was derived from the spatio-temporal evolution of bone tissue's nanostructure, coupled with microtomographic imaging. The findings indicate that understanding mineral crystal thickness or plate orientation can improve our knowledge of osseointegration.
  •  
22.
  • Chevalier, J., et al. (författare)
  • Low-temperature degradation in zirconia with a porous surface
  • 2011
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 7:7, s. 2986-2993
  • Tidskriftsartikel (refereegranskat)abstract
    • Today there is growing interest in zirconia in the dental field, but its use is still recent. Dental zirconia is mainly found in the form of yttria-stabilized zirconia crowns, bridges and abutments, and several companies are developing zirconia implants as an alternative to the standard biomedical grade titanium. In order to favor bone in-growth and osseointegration of zirconia implants, several strategies are now being explored to process rough and/or porous surfaces. The aim of this paper was to evaluate the resistance to environmental degradation of yttria-stabilized zirconia coated with a porous layer. We show that specific conditions of processing to generate the porous layer at the surface can lead to an accelerated tetragonal-monoclinic transformation of the porous layer in the presence of water. The impact of the transformation was evaluated in terms of structural integrity. Bending strength was not affected but the cohesion of the porous coating and its adhesion with the dense part deteriorated. We show that other processing conditions insure much better stability. Low-temperature degradation resistance of such porous surfaces should therefore be carefully followed and controlled in order to avoid critical problems in the future. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
23.
  • Dejea, Hector, et al. (författare)
  • Multi-scale characterization of the spatio-temporal interplay between elemental composition, mineral deposition and remodelling in bone fracture healing
  • 2023
  • Ingår i: Acta Biomaterialia. - 1742-7061. ; 167, s. 135-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineralization involves a complex orchestration of physico-chemical responses from the organism. Despite extensive studies, the detailed mechanisms of mineralization remain to be elucidated. This study aims to characterize bone mineralization using an in-vivo long bone fracture healing model in the rat. The spatio-temporal distribution of relevant elements was correlated to the deposition and maturation of hydroxyapatite and the presence of matrix remodeling compounds (MMP-13). Multi-scale measurements indicated that (i) zinc is required for both the initial mineral deposition and resorption processes during mature mineral remodeling; (ii) Zinc and MMP-13 show similar spatio-temporal trends during early mineralization; (iii) Iron acts locally and in coordination with zinc during mineralization, thus indicating novel evidence of the time-events and inter-play between the elements. These findings improve the understanding of bone mineralization by explaining the link between the different constituents of this process throughout the healing time.
  •  
24.
  • Deng, C, et al. (författare)
  • Collagen and glycopolymer based hydrogel for potential corneal application
  • 2010
  • Ingår i: ACTA BIOMATERIALIA. - : Elsevier. - 1742-7061. ; 6:1, s. 187-194
  • Tidskriftsartikel (refereegranskat)abstract
    • 6-Methacryloyl-alpha-D-galactopyranose (MG) was synthesized, and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry, and single-crystal X-ray diffraction. A series of interpenetrating polymer network (IPN) hydrogels was fabricated by simultaneously photo-curing MG crosslinked by poly(ethylene glycol) diacrylate and chemically crosslinking type I collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. The successful incorporation of the glycopolymer, polymer MG, into collagen hydrogel was confirmed by FTIR and solid-state C-13 NMR. The optical characteristics of the IPN hydrogels are comparable to those of human corneas. The tensile strength and modulus of the hydrogels are enhanced by incorporation of polymer MG in comparison to that of the control collagen hydrogel. Biodegradation results indicated that polymer MG enhanced the stability of the composite hydrogels against collagenase. In vitro results demonstrated that the IPN hydrogel supported the adhesion and proliferation of human corneal epithelial cells and outperformed human cornea in blocking bacteria adhesion. Taken together, the IPN hydrogel might be a promising material for use in corneal lamellar keratoplasty. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
25.
  • Dånmark, Staffan, et al. (författare)
  • In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization
  • 2011
  • Ingår i: ACTA BIOMATERIALIA. - : Elsevier BV. - 1742-7061. ; 7:5, s. 2035-2046
  • Tidskriftsartikel (refereegranskat)abstract
    • Degradation characteristics in response to electron beam sterilization of designed and biodegradable aliphatic polyester scaffolds are relevant for clinically successful synthetic graft tissue regeneration Scaffold degradation in vitro and in vivo were documented and correlated to the macroscopic structure and chemical design of the original polymer The materials tested were of inherently diverse hydrophobicity and crystallinity poly(L-lactide) (poly(LLA)) and random copolymers from L-lactide and epsilon-caprolactone or 1.5-dioxepan-2-one, fabricated into porous and non-porous scaffolds After sterilization, the samples underwent hydrolysis in vitro for up to a year In vivo, scaffolds were surgically implanted into rat calvarial defects and retrieved for analysis after 28 and 91 days In vitro, poly(L-lactide-co-1, 5-dioxepan-2-one) (poly(LLA-co-DXO)) samples degraded most rapidly during hydrolysis, due to the pronounced chain-shortening reaction caused by the sterilization. This was indicated by the rapid decrease in both mass and molecular weight of poly(LLA-co-DXO). Poly(L-lactide-co-epsilon-caprolactone) (poly(LLA-co-CL)) samples were also strongly affected by sterilization, but mass loss was more gradual; molecular weight decreased rapidly during hydrolysis Least affected by sterilization were the poly(LLA) samples, which subsequently showed low mass loss rate and molecular weight decrease during hydrolysis. Mechanical stability varied greatly. poly(LLA-co-CL) withstood mechanical testing for up to 182 days, while poly(LLA) and poly(LLA-co-DXO) samples quickly became too brittle Poly(LLA-co-DXO) samples unexpectedly degraded more rapidly in vitro than in vivo. After sterilization by electron beam irradiation, the three biodegradable polymers present widely diverse degradation profiles, both in vitro and in vivo. Each exhibits the potential to be tailored to meet diverse clinical tissue engineering requirements
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 149
Typ av publikation
tidskriftsartikel (141)
forskningsöversikt (8)
Typ av innehåll
refereegranskat (146)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Palmquist, Anders, 1 ... (11)
Thomsen, Peter, 1953 (9)
Isaksson, Hanna (9)
Andersson, Martin, 1 ... (8)
Griffith, May (7)
Persson, Cecilia (7)
visa fler...
Omar, Omar (6)
Ginebra, Maria-Pau (6)
Mestres, Gemma (5)
Tengvall, Pentti (5)
Gasser, T. Christian (5)
Liu, Yang (4)
Engqvist, Håkan (4)
Tägil, Magnus (4)
Hilborn, Jöns (4)
Johansson, Anna, 196 ... (4)
Lausmaa, Jukka (4)
Lidgren, Lars (4)
Galli, Silvia (3)
Zhang, Yu (3)
Wennerberg, Ann, 195 ... (3)
Jimbo, Ryo (3)
Puthia, Manoj (3)
Finne-Wistrand, Anna (3)
Wennerberg, Ann (3)
Rafat, Mehrdad (3)
Holzapfel, Gerhard A ... (3)
Westergren-Thorsson, ... (2)
Johansson, Fredrik (2)
Novak, Vladimir (2)
Hakkarainen, Minna (2)
Albertsson, Ann-Chri ... (2)
Teramura, Yuji (2)
Agheli, Hossein, 196 ... (2)
Schouenborg, Jens (2)
Matic, Aleksandar, 1 ... (2)
Mustafa, Kamal (2)
Bjursten, Lars Magnu ... (2)
Kuffova, Lucia (2)
Forrester, John V. (2)
Öhman, Caroline (2)
Dahlin, Christer, 19 ... (2)
Fagerholm, Per (2)
Alarcon, Emilio I. (2)
Kanje, Martin (2)
Lindahl, Tomas (2)
Eliasson, Pernilla T ... (2)
Alloisio, Marta (2)
Roy, Joy (2)
Mollnes, Tom Eirik (2)
visa färre...
Lärosäte
Uppsala universitet (37)
Göteborgs universitet (29)
Lunds universitet (26)
Kungliga Tekniska Högskolan (21)
Linköpings universitet (21)
Chalmers tekniska högskola (19)
visa fler...
Karolinska Institutet (14)
RISE (11)
Umeå universitet (7)
Malmö universitet (6)
Linnéuniversitetet (3)
Sveriges Lantbruksuniversitet (3)
Luleå tekniska universitet (2)
Örebro universitet (1)
visa färre...
Språk
Engelska (149)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (91)
Teknik (50)
Naturvetenskap (29)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy