SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2050 7526 "

Sökning: L773:2050 7526

  • Resultat 1-25 av 190
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adamczak, Desiree, et al. (författare)
  • Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation
  • 2021
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 9:13, s. 4597-4606
  • Tidskriftsartikel (refereegranskat)abstract
    • Atom-economic protocols for the synthesis of poly(indacenodithiophene-alt-benzothiadiazole) (PIDTBT) are presented in which all C-C coupling steps are achieved by direct arylation. Using two different synthetic pathways, PIDTBT copolymers with different side chains (hexylphenyl, octylphenyl, dodecyl, methyl/2-octyldodecylphenyl, 2-octyldodecylphenyl/2-octyldodecylphenyl) and molecular weight (MW) are prepared. Route A makes use of direct arylation polycondensation (DAP) of indacenodithiophene (IDT) and 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2) leading to PIDTBT in high yields, with adjustable MW and without indications for structural defects. Route B starts from a polyketone precursor also prepared by DAP following cyclization. While route B allows introduction of asymmetric side chains at the IDT unit, polymer analogous cyclization gives rise to defect formation. The absorption coefficient of PIDTBT with alkylphenyl side chains made by route A increases with MW. Field-effect hole mobilities around similar to 10(-2) cm(2) V-1 s(-1) are molecular weight-independent, which is ascribed to a largely amorphous thin film morphology. PIDTBT with linear dodecyl side (C12) chains exhibits a bathochromic shift (20 nm), in agreement with theory, and more pronounced vibronic contributions to absorption spectra. In comparison to alkylphenyl side chains, C12 side chains allow for increased order in thin films, a weak melting endotherm and lower energetic disorder, which altogether explain substantially higher field-effect hole mobilities of similar to 10(-1) cm(2) V-1 s(-1).
  •  
2.
  • Ali Ahmad, Syed Ossama, et al. (författare)
  • Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions
  • 2021
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 9:40, s. 14065-14092
  • Forskningsöversikt (refereegranskat)abstract
    • Perovskite solar cells (per-SCs) with high performance and cost-effective solution processing have been the center of interest for researchers in the past decade. Power conversion efficiencies (PCEs) have been gradually improved up to 25.2% with relatively improved stability, which is an unparalleled progress in all generations of solar cell (SC) technology. However, there are still some prevailing challenges regarding the stability and upscaling of these promising devices. Recently, 2D layered materials (LMs) have been extensively explored to overcome the prevailing challenges of poor stability (under moisture, light soaking and high temperature), halide segregation, hysteresis, involvement of toxic materials (i.e., lead), and upscaling of devices. A critical review addressing the recent developments in the use of 2D materials, especially transition metal dichalcogenides (TMDCs), is hence necessary. The development of novel synthesis and deposition techniques including liquid-metal synthesis and ultrasonic assisted spray pyrolysis has offered more efficient fabrication of 2D-LMs with controlled thickness and morphology. Effective functionalization approaches to increase the dispersability of 2D-LMs in non-polar solvents has boosted their potential application in solar cell technology as well. Moreover, compositing 2D TMDCs with suitable organic/inorganic compounds has enabled superior charge kinetics in all functional parts of per-SCs. In addition, newly developed materials such as graphyne and graphdyine along with 2D metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have been employed in per-SCs to achieve PCEs up to 20%. This review summarizes the recent progress and challenges in the application of 2D-LMs in per-SCs and outlines the future pathways to further extend the PCE of per-SCs beyond 25%. This review particularly focuses on 2D-LMs as electrode materials and additives, the underlying charge (electron-hole) transport phenomenon in the functional layers, and their chemical and structural stability.
  •  
3.
  • Alsufyani, Maryam, et al. (författare)
  • The effect of aromatic ring size in electron deficient semiconducting polymers for n-type organic thermoelectrics
  • 2020
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 8:43, s. 15150-15157
  • Tidskriftsartikel (refereegranskat)abstract
    • N-type semiconducting polymers have been recently utilized in thermoelectric devices, however they have typically exhibited low electrical conductivities and poor device stability, in contrast to p-type semiconductors, which have been much higher performing. This is due in particular to the n-type semiconductors low doping efficiency, and poor charge carrier mobility. Strategies to enhance the thermoelectric performance of n-type materials include optimizing the electron affinity (EA) with respect to the dopant to improve the doping process and increasing the charge carrier mobility through enhanced molecular packing. Here, we report the design, synthesis and characterization of fused electron-deficient n-type copolymers incorporating the electron withdrawing lactone unit along the backbone. The polymers were synthesized using metal-free aldol condensation conditions to explore the effect of enlarging the central phenyl ring to a naphthalene ring, on the electrical conductivity. When n-doped with N-DMBI, electrical conductivities of up to 0.28 S cm(-1), Seebeck coefficients of -75 mu V K-1 and maximum Power factors of 0.16 mu W m(-1) K-2 were observed from the polymer with the largest electron affinity of -4.68 eV. Extending the aromatic ring reduced the electron affinity, due to reducing the density of electron withdrawing groups and subsequently the electrical conductivity reduced by almost two orders of magnitude.
  •  
4.
  • Bai, Sai, et al. (författare)
  • Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications
  • 2016
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 4:18, s. 3898-3904
  • Tidskriftsartikel (refereegranskat)abstract
    • Colloidal metal halide perovskite nanocrystals (NCs) have emerged as promising materials for optoelectronic devices and received considerable attention recently. Their superior photoluminescence (PL) properties provide significant advantages for lighting and display applications. In this Highlight, we discuss recent developments in the design and chemical synthesis of colloidal perovskite NCs, including both organic-inorganic hybrid and all inorganic perovskite NCs. We review the excellent PL properties and current optoelectronic applications of these perovskite NCs. In addition, critical challenges that currently limit the applicability of perovskite NCs are discussed, and prospects for future directions are proposed.
  •  
5.
  • Barghi, Hamidreza, 1970, et al. (författare)
  • Synthesis of an electroconductive membrane using poly(hydroxymethyl-3,4-ethylenedioxythiophene-co-tetramethylene-N-hydrox yethyl adipamide)
  • 2013
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 1:39, s. 6347-6354
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of a novel electroconductive membrane (ECM) was studied with the aim of producing an electroconductive membrane (ECM) with low electrical resistance and appropriate mechanical properties. The method was based on copolymerization of a highly electroconductive monomer (hydroxymethyl-3,4-ethylenedioxythiophene) with highly mechanical resistant hydrophilized polyamide 46 (polytetramethylene-N-hydroxyethyl adipamide). Due to the lack of hydroxyl groups, polyamide 46 does not have the tendency to take part in any chemical reactions, therefore prior to copolymerization, PA 46 was hydrophilized with acetaldehyde to create reactive sites, which allowed copolymerization to occur. At the final stage, a very thin layer, 566 nm conductive poly(hydroxymethyl-3,4-ethylenedioxythiophene) homopolymer was localised using in situ plasma polymerization in order to improve the electrical conductivity of the obtained copolymer. The result was an adherent, highly conductive, semi-hydrophilic and flexible ECM. The presence of hydroxyl groups in the final product led to improved hydrophilicity of the conductive membrane with a surface tension of 41 mJ m(-2). The electrical resistance of PA 46 was dramatically reduced after copolymerization, to 202 in dry and 54 k Omega cm(-2) in wet conditions; furthermore, after plasma treatment, this reduction continued to 105 in dry and 2 k Omega cm(-2) in wet conditions. Other parameters such as flux flow, roughness, pore size, pore distribution, contact angle, surface energy and thermal stability of the ECM were also investigated.
  •  
6.
  • Barghi, H., et al. (författare)
  • Synthesis of an electroconductive membrane using poly(hydroxymethyl-3,4-ethylenedioxythiophene-co-tetramethylene-N-hydroxyethyl adipamide)
  • 2013
  • Ingår i: Journal of Materials Chemistry C. - : R S C Publications. - 2050-7526 .- 2050-7534. ; 1:39, s. 6347-6354
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of a novel electroconductive membrane (ECM) was studied with the aim of producing an electroconductive membrane (ECM) with low electrical resistance and appropriate mechanical properties. The method was based on copolymerization of a highly electroconductive monomer (hydroxymethyl-3,4-ethylenedioxythiophene) with highly mechanical resistant hydrophilized polyamide 46 (polytetramethylene-N-hydroxyethyl adipamide). Due to the lack of hydroxyl groups, polyamide 46 does not have the tendency to take part in any chemical reactions, therefore prior to copolymerization, PA 46 was hydrophilized with acetaldehyde to create reactive sites, which allowed copolymerization to occur. At the final stage, a very thin layer, 566 nm conductive poly(hydroxymethyl-3,4-ethylenedioxythiophene) homopolymer was localised using in situ plasma polymerization in order to improve the electrical conductivity of the obtained copolymer. The result was an adherent, highly conductive, semi-hydrophilic and flexible ECM. The presence of hydroxyl groups in the final product led to improved hydrophilicity of the conductive membrane with a surface tension of 41 mJ m−2. The electrical resistance of PA 46 was dramatically reduced after copolymerization, to 202 in dry and 54 kΩ cm−2 in wet conditions; furthermore, after plasma treatment, this reduction continued to 105 in dry and 2 kΩ cm−2 in wet conditions. Other parameters such as flux flow, roughness, pore size, pore distribution, contact angle, surface energy and thermal stability of the ECM were also investigated.
  •  
7.
  • Baryshnikov, Gleb V., et al. (författare)
  • Nine-ring angular fused biscarbazoloanthracene displaying a solid state based excimer emission suitable for OLED application
  • 2016
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 4:24, s. 5795-5805
  • Tidskriftsartikel (refereegranskat)abstract
    • A new biscarbazoloanthracene consisting of nine fused aromatic rings, including two pyrrole units, has been obtained in a straightforward and convergent synthesis. Computational chemistry and conformational analysis revealed that the semiconductor's molecule is not planar, the two carbazole moieties being helical twisted from the plane of the anthracene unit. Photophysical and electrochemical measurements showed that this angular fused heteroacene has a low lying HOMO energy level with a wide band gap despite its extended pi-conjugated molecular framework. Based on its relatively low-lying HOMO level, the semiconductor promises a high environmental stability in comparison to other related linear fused acenes and heteroacenes. The biscarbazoloanthracene has been applied as the light emitting layer in a white light emitting diode (WOLED). It is proposed that the white OLED feature is due to dual light emission properties from the active semiconductor layer being based on both the molecular luminescence of the small molecule and a discrete excimer emission made possible by suitable aggregates in the solid state. Noteworthy, this is the first reported example of such a behavior observed in a small molecule heteroacene rather than an oligomer or a polymer.
  •  
8.
  • Bazuev, Gennady V., et al. (författare)
  • The effect of manganese oxidation state on antiferromagnetic order in SrMn1-xSbxO3 (0 < x < 0.5) perovskite solid solutions
  • 2019
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 7:7, s. 2085-2095
  • Tidskriftsartikel (refereegranskat)abstract
    • The mixed-valence manganese (Mn3+/Mn4+) solid solution, SrMn1-xSbxO3, was prepared for the first time. Two ranges of solid solutions were found: (1) SrMn1-xSbxO3 (0.025 x 0.09) with monoclinically distorted 6H-SrMnO3 polytype (sp. gr. C/2c) and (2) SrMn1-xSbxO3 (0.17 x 0.50) with a tetragonal unit cell (sp. gr. I4/mcm). Crystal structure refinement using X-ray and neutron powder diffraction data showed that the structure of the monoclinic solid solution consists of corner-sharing octahedra around sites occupied by manganese and antimony ions and face-sharing octahedra around sites occupied by manganese ions only, while the tetragonal solid solution has a random distribution of B-site cations. The presence of long-range antiferromagnetic order with a Neel temperature of about 148 K for SrMn0.80Sb0.20O3 and about 280 K for SrMn0.925Sb0.075O3 was found from the results of DC and AC susceptibility and neutron diffraction experiments at 5 K and 80 K.
  •  
9.
  • Benatto, Leandro, et al. (författare)
  • Molecular origin of efficient hole transfer from non-fullerene acceptors : insights from first-principles calculations
  • 2019
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 7:39, s. 12180-12193
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the strong exciton binding energy (E-b) of organic materials, the energy offset between donor (D) and acceptor (A) materials is essential to promote charge generation in organic solar cells (OSCs). Yet an efficient exciton dissociation from non-fullerene acceptors (NFAs) began to be observed in D/A blends even at very low driving force for hole transfer (Delta H-h). The mechanism behind this efficient photoinduced hole transfer (PHT) remains unclear since current estimates from calculations of isolated molecules indicate that E-b > Delta H-h. Here we rationalize these discrepancies using density functional theory (DFT), the total Gibbs free energy method and the extended Huckel theory (EHT). First, we employed DFT to calculate E-b for NFAs of three representative groups (perylene diimide derivatives, indacenodithiophene and subphthalocyanines) as well as for fullerene acceptors (FAs). Considering isolated molecules in the calculations, we verified that E-b for NFAs is lower than for FAs but still higher than the experimental Delta H-h in which efficient PHT has been observed. Finding the molecular geometry of the excited state, we also obtain that the structural relaxation after photoexcitation tends to further decrease (increase) E-b for NFAs (FAs). This effect helps explain the delayed charge generation measured in some NFA systems. However, this effect is still not large enough for a significant decrease in E-b. We then applied EHT to quantify the decrease of E-b induced by energy levels coupling between stacked molecules in a model aggregate. We then estimated the number of stacked molecules so that E-b approaches Delta H-h's. We found that small NFA aggregates, involving around 5 molecules, are already large enough to explain the experiments. Our results are justified by the low energy barrier to the generation of delocalized states in these systems (especially for the hole delocalization). Therefore, they indicate that molecular systems with certain characteristics can achieve efficient molecular orbital delocalization, which is a key factor to allow an efficient exciton dissociation in low-driving-force systems. These theoretical findings provide a sound explanation to very recent observations in OSCs.
  •  
10.
  • Benesperi, Iacopo, et al. (författare)
  • The researcher's guide to solid-state dye-sensitized solar cells
  • 2018
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 6:44, s. 11903-11942
  • Forskningsöversikt (refereegranskat)abstract
    • In order to sustainably support its ever-increasing energy demand, the human society will have to harvest renewable energy wherever and whenever possible. When converting light to electricity, silicon solar cells are the technology of choice to harvest direct sunlight due to their high performance and continuously dropping price. For diffused light and indoor applications, however, silicon is not the material of choice. To power the next gizmo in your smart home, dye-sensitized solar cells (DSCs) are a viable alternative. Made from inexpensive, earth-abundant, and non-toxic materials, DSCs perform best at low light intensity. So far, issues such as leakage of the liquid electrolyte and its corrosive nature have limited the commercialization of this technology. To overcome these limitations, solid-state DSCs (ssDSCs) - in which the liquid electrolyte is replaced by a solid material - have been developed. For many years their efficiencies have been poor, preventing them from being widely employed. In the past six years, however, research efforts have led them to rival with their liquid counterparts. Here, we will review recent advancements in the field of ssDSCs. Every device component will be acknowledged, from metal oxides and new dyes to novel hole transporters, dopants, counter-electrodes and device architectures. After reviewing materials, long-term stability of devices will be addressed, finally giving an insight into the future that awaits this exciting technology.
  •  
11.
  • Benetti, Daniele, et al. (författare)
  • Functionalized multi-wall carbon nanotubes/TiO2 composites as efficient photoanodes for dye sensitized solar cells
  • 2016
  • Ingår i: Journal of Materials Chemistry C. - 2050-7526 .- 2050-7534. ; 4:16, s. 3555-3562
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the effects of incorporation of different concentrations of carboxyl group (COOH)-functionalized multi-wall carbon nanotubes (F-MWCNTs) into TiO2 active layers for dye-sensitized solar cells (DSSCs). Standard DSSCs with bare TiO2 exhibit a photo-conversion efficiency (PCE) of 6.05% and a short circuit current density (Jsc) of 13.3 mA cm−2. The presence of 2 wt% F-MWCNTs in the photoanodes increases the PCE up to 7.95% and Jsc up to 17.5 mA cm−2. The photoanodes were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The electrochemical behaviour of the solar cells was investigated by electrochemical impedance spectroscopy (EIS). We attribute the improved performances to the combined effect of increased dye loading and reduced charge recombination (as clarified by dye loading and EIS measurements), due to the conformal coverage of F-MWCNTs, which allows fast and efficient charge collection in operating solar cells. These results can help in improving the PCE in DSSCs in an elegant and straightforward way, minimizing the need of additional steps (e.g. pre- and post-treatment with TiCl4) for photoanode preparation.
  •  
12.
  • Beyer, Paul, et al. (författare)
  • Fermi level pinned molecular donor/acceptor junctions : Reduction of induced carrier density by interfacial charge transfer complexes
  • 2020
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 8:43, s. 15199-15207
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased hole density in an electron donor-type organic semiconductor can be achieved by deposition of a strong acceptor-type molecular layer on top, and has been shown to enable adjusting the carrier density in organic field effect transistors (OFETs). This interfacial charge transfer is due to simultaneous Fermi level (EF) pinning of the donor's highest occupied level and the acceptor's lowest unoccupied level. Here, we investigate the electrical properties of such an EF-pinned junction formed by diindenoperylene (DIP, as donor) and hexafluoro-tetracyano-naphthoquinodimethane (F6, as acceptor) in OFETs, as well as its electronic properties by photoelectron spectroscopy and electrostatic modelling. We find that, in addition to the EF-pinning induced integer charge transfer across the interface, DIP and F6 form charge transfer complexes (CPXs) at their junction. The molecularly thin CPX interlayer acts as insulator and significantly reduces the density of carriers induced on either side of the junction, compared to a scenario without such an interlayer. CPX formation is thus unfavourable for the effectiveness of controlling carrier density at molecular donor/acceptor junctions by EF-pinning. This journal is
  •  
13.
  • Bharmoria, Pankaj, 1985, et al. (författare)
  • Photon upconverting bioplastics with high efficiency and in-air durability
  • 2021
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 9:35, s. 11655-11661
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an urgent demand for substituting synthetic plastics to bioplastics for sustainable renewable energy production. Here, we report a simple one-step approach to create bioplastics with efficient and durable photon upconversion (UC) by encapsulating non-volatile chromophore solutions into collagen-based protein films. By just drying an aqueous solution of gelatin, surfactant, and UC chromophores (sensitizer and annihilator), liquid surfactant microdroplets containing the UC chromophores are spontaneously confined within the gelatin films. Thanks to the high fluidity of microdroplets and the good oxygen barrier ability of the collagen-based fiber matrices, a high absolute TTA-UC efficiency of 15.6% and low threshold excitation intensity of 14.0 mW cm−2are obtained even in air. The TTA-UC efficiency was retained up to 8.2% after 2 years of storage under ambient conditions, hence displaying the significant durability desired for practical applications.
  •  
14.
  • Boström, Hanna, et al. (författare)
  • Octahedral tilting in Prussian blue analogues
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 10:37, s. 13690-13699
  • Tidskriftsartikel (refereegranskat)abstract
    • Octahedral tilting is key to the structure and functionality of perovskites. We present a metastudy of published literature showing how these distortions manifest in the related Prussian blue analogues (PBAs): cyanide versions of double perovskites with formula AM[M '(CN)(6)](1-y)(y)center dot nH(2)O (A = alkali metal, M and M ' = transition metals, = vacancy/defect). Tilts are favoured by high values of x if A = Na or K, whereas the transition metals play a less important role. External hydrostatic pressure induces tilt transitions nearly irrespective of the stoichiometry, whereas thermal transitions are only reported for x > 1. Interstitial water can alter the transitions induced by a different stimulus, but (de)hydration per se does not lead to tilts. Finally, the implications for rational design of critical functionality-including improper ferroelectricity and electrochemical performance-are discussed. The results are integral for a fundamental understanding of phase transitions and for the development of functional materials based on PBAs.
  •  
15.
  • Brooke, Robert, et al. (författare)
  • Controlling the electrochromic properties of conductive polymers using UV-light
  • 2018
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 6:17, s. 4663-4670
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenomenon of electrochromism in conductive polymers is well known and has been exploited in many scientific reports. Using a newly developed patterning technique for conductive polymers, we manufactured high-resolution electrochromic devices from the complementary polymers PEDOT and polypyrrole. The technique, which combines UV-light exposure with vapor phase polymerization, has previously only been demonstrated with the conductive polymer PEDOT. We further demonstrated how the same technique can be used to control the optical properties and the electrochromic contrast in these polymers. Oxidant exposure to UV-light prior to vapor phase polymerization showed a reduction in polymer electrochromic contrast allowing high-resolution (100 mu m) patterns to completely disappear while applying a voltage bias due to their optical similarity in one redox state and dissimilarity in the other. This unique electrochromic property enabled us to construct devices displaying images that appear and disappear with the change in applied voltage. Finally, a modification of the electrochromic device architecture permitted a dual image electrochromic device incorporating patterned PEDOT and patterned polypyrrole on the same electrode, allowing the switching between two different images.
  •  
16.
  • Brooke, Robert, et al. (författare)
  • Infrared electrochromic conducting polymer devices
  • 2017
  • Ingår i: Journal of Materials Chemistry C. - : The Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 5:23, s. 5824-5830
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is well known for its electrochromic properties in the visible region. Less focus has been devoted to the infrared (IR) wavelength range, although tunable IR properties could enable a wide range of novel applications. As an example, modern day vehicles have thermal cameras to identify pedestrians and animals in total darkness, but road and speed signs cannot be easily visualized by these imaging systems. IR electrochromism could enable a new generation of dynamic road signs that are compatible with thermal imaging, while simultaneously providing contrast also in the visible region. Here, we present the first metal-free flexible IR electrochromic devices, based on PEDOT:Tosylate as both the electrochromic material and electrodes. Lateral electrochromic devices enabled a detailed investigation of the IR electrochromism of thin PEDOT:Tosylate films, revealing large changes in their thermal signature, with effective temperature changes up to 10 [degree]C between the oxidized (1.5 V) and reduced (-1.5 V) states of the polymer. Larger scale (7 [times] 7 cm) vertical electrochromic devices demonstrate practical suitability and showed effective temperature changes of approximately 7 [degree]C, with good optical memory and fast switching (1.9 s from the oxidized state to the reduced state and 3.3 s for the reversed switching). The results are highly encouraging for using PEDOT:Tosylate for IR electrochromic applications.
  •  
17.
  • Brooke, Robert, 1989-, et al. (författare)
  • Infrared electrochromic conducting polymer devices
  • 2017
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 5:23, s. 5824-5830
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is well known for its electrochromic properties in the visible region. Less focus has been devoted to the infrared (IR) wavelength range, although tunable IR properties could enable a wide range of novel applications. As an example, modern day vehicles have thermal cameras to identify pedestrians and animals in total darkness, but road and speed signs cannot be easily visualized by these imaging systems. IR electrochromism could enable a new generation of dynamic road signs that are compatible with thermal imaging, while simultaneously providing contrast also in the visible region. Here, we present the first metal-free flexible IR electrochromic devices, based on PEDOT:Tosylate as both the electrochromic material and electrodes. Lateral electrochromic devices enabled a detailed investigation of the IR electrochromism of thin PEDOT:Tosylate films, revealing large changes in their thermal signature, with effective temperature changes up to 10 °C between the oxidized (1.5 V) and reduced (-1.5 V) states of the polymer. Larger scale (7 × 7 cm) vertical electrochromic devices demonstrate practical suitability and showed effective temperature changes of approximately 7 °C, with good optical memory and fast switching (1.9 s from the oxidized state to the reduced state and 3.3 s for the reversed switching). The results are highly encouraging for using PEDOT:Tosylate for IR electrochromic applications.
  •  
18.
  • Brooke, Robert, et al. (författare)
  • Organic energy devices from ionic liquids and conducting polymers
  • 2016
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 4:7, s. 1550-1556
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of smart technologies in our daily lives, from smartphones to auto-dimming windows to touch sensors, has become pervasive. With growing desire for these devices to be conformable and flexible, traditional materials are being replaced to create a class of products known as active organic electronic devices (OEDs). These new devices owe their ability to switch electrical and/or optical function to the intimate interaction between an inherently conducting polymer and electrolyte, typically an ionic liquid. Herein, we provide the first observations that specific ionic liquids can reduce or oxidise conducting polymers upon intimate contact in the absence of any electrical stimuli. The ability to reduce or oxidise the inherently conducting polymer depends on the cation and anion pair within the ionic liquid. Extending the utility of this phenomenon is made by fabricating OEDs such as prototype fuel cells, supercapacitors and smart windows.
  •  
19.
  • Bäcklund, Fredrik, et al. (författare)
  • Amyloid fibrils as dispersing agents for oligothiophenes: control of photophysical properties through nanoscale templating and flow induced fibril alignment
  • 2014
  • Ingår i: Journal of Materials Chemistry. - : Royal Society of Chemistry (RSC). - 1364-5501 .- 0959-9428 .- 2050-7526 .- 2050-7534. ; 2:37, s. 7811-7822
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein we report that protein fibrils formed from aggregated proteins, so called amyloid fibrils, serve as an excellent dispersing agent for hydrophobic oligothiophenes such as alpha-sexithiophene (6T). Furthermore, the protein fibrils are capable of orienting 6T along the fibril long axis, as demonstrated by flow-aligned linear dichroism spectroscopy and polarized fluorescence microscopy. The materials are prepared by solid state mixing of 6T with a protein capable of self-assembly. This results in a water soluble composite material that upon heating in aqueous acid undergoes self-assembly into protein fibrils non-covalently functionalized with 6T, with a typical diameter of 5-10 nm and lengths in the micrometre range. The resulting aqueous fibril dispersions are a readily available source of oligothiophenes that can be processed from aqueous solvent, and we demonstrate the fabrication of macroscopic structures consisting of aligned 6T functionalized protein fibrils. Due to the fibril induced ordering of 6T these structures exhibit polarized light emission.
  •  
20.
  • Börjesson, Karl, 1982, et al. (författare)
  • Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer
  • 2015
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 3:16, s. 4156-4161
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic semiconductors can be easily combined with other molecular building blocks in order to fabricate multifunctional devices, in which each component conveys a specific (opto)electronic function. We have fabricated photoswitchable hybrid thin-film transistors based on an active bi-component material, consisting of an n-type fullerene derivative and a photochromic diarylethene that possesses light-tunable energy levels. The devices can be gated in two independent ways by either using an electrical stimulus via the application of a voltage to the gate electrode or an optical stimulus causing interconversion of the diarylethene molecules between their two isomers. Fine control over the device output current is achieved by engineering the diarylethenes' LUMO that can act as an intra-gap state controlled by a distinct wavelength in the UV or in the visible range. Importantly, the devices based on a mixed diarylethene/fullerene active layer preserve the high mobility of the pristine semiconductor. This journal is
  •  
21.
  • Can, Ayse, et al. (författare)
  • Indenofluorenes for organic optoelectronics: the dance of fused five- and six-membered rings enabling structural versatility
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 10:22, s. 8496-8535
  • Forskningsöversikt (refereegranskat)abstract
    • Polycyclic pi-conjugated hydrocarbons (PCHs), either unfunctionalized or structurally modified derivatives, have attracted tremendous interest in the past few decades as high-performance semiconductors for use in new generations of organic (opto)electronic devices. Among several PCHs realized to date, the 6-5-6-5-6 pi-fused-ring backbone of indenofluorene (IF) stands out as a unique semiconducting architecture with great structural and property versatility affording six different regioisomers, diverse functionalization/substitution positions, pi-conjugation/delocalization patterns, aromatic behaviors, and electronic structures. In this review, we summarize and analyze the historical and recent advances in the design and implementation of IF-based semiconductors in organic transistor and solar cell devices, as well as in understanding the chemical structure-molecular property-semiconductivity relationships. Following an introduction to the fascinating properties of an IF pi-framework that distinguishes this core among PCHs, we present IF-based semiconductors and discuss their properties by classifying them into four main families (IF-diones, IF-DCVs/IF-TTFs, pi-IFs, and (un)substituted DH-IFs) considering whether methylene or methine C-bridges are present and how these positions are functionalized or substituted. For each family, design and synthetic approaches, molecular properties, and transistor/solar cell device applicability and/or performance are reviewed and discussed. At the end, we conclude with a section discussing the challenges and opportunities for future progress of IF-based semiconductor materials and related (opto)electronic technologies.
  •  
22.
  • Carrod, Andrew J., 1994, et al. (författare)
  • Modulating TTA efficiency through control of high energy triplet states
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 10:12, s. 4923-4928
  • Tidskriftsartikel (refereegranskat)abstract
    • An ideal annihilator in triplet-triplet annihilation photon upconversion (TTA-UC) can achieve a maximum of 50% quantum efficiency. This spin statistical limit depends on the energies of the triplet states of the annihilator molecule, with only 20% quantum efficiencies possible in less-optimal energy configurations (ET2 <= 2ET1). Our work utilises three perylene analogues substituted with phenyl in sequential positions. When substituted in the bay position the isomer displays drastically lowered upconversion yields, which can be explained by the system going from an ideal to less-ideal energy configuration. We further concluded position 2 is the best site when functionalising perylene without a wish to affect its photophysics, thus demonstrating how molecular design can influence upconversion quantum efficiencies by controlling the energetics of triplet states through substitution. This will in turn help in the design of molecules that maximise upconversion efficiencies for materials applications.
  •  
23.
  • Chen, Bin, et al. (författare)
  • Full-colour luminescent compounds based on anthracene and 2,2 '-dipyridylamine
  • 2013
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 1:44, s. 7409-7417
  • Tidskriftsartikel (refereegranskat)abstract
    • Starting from two simple units of anthracene and 2,2'-dipyridylamine, a series of new luminescent compounds 1-8 were designed and synthesized by a combined strategy of changing the connection mode between the two units, extending the conjugation size, and introducing an additional electron donor. Photophysical properties of 1-8 were investigated and discussed on the basis of solvatochromic behaviour, theoretical calculations, crystal structure, and optimized structures. Interestingly, the emission wavelengths of these compounds could be successfully tuned from violet to red both in solutions and the solid-state, and prominent positive solvatochromism was observed for the compounds with a D-p-A framework. Consider compound 7 as an example, it shows peaks at 526 nm and 627 nm in cyclohexane and DMSO, respectively. Meanwhile, the quantum yield was decreased from 0.80 in cyclohexane to 0.12 in DMSO. The introduction of bulky groups was demonstrated to be effective for suppressing the aggregation effect and thus improving the solid state emission quantum yield. These results indicate that the combined structure modulation strategy offers a powerful tool for tuning the emission behaviour. To demonstrate the possibility of practical applications, 2 was employed as the emitting material for the fabrication of deep-blue organic light-emitting diodes (OLEDs), which showed a maximum external quantum efficiency of 2.2%. The CIE coordinates of (0.15, 0.08) are indicative of excellent blue color purity.
  •  
24.
  • Chen, S., et al. (författare)
  • Aggregation-controlled photochromism based on a dithienylethene derivative with aggregation-induced emission
  • 2017
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 5:10, s. 2717-2722
  • Tidskriftsartikel (refereegranskat)abstract
    • We report novel aggregation-induced emission (AIE) characteristics involving aggregation-controlled photochromism properties of a dithienylethene derivative, BTE-EQ, where two quinolinemalononitrile (EQ) units are covalently attached to a dithienylethene core. The typical AIE effect of BTE-EQ has been found to originate from the AIE character of the EQ units with respect to the reference compound BTE, which does not contain an EQ unit. The photochromism study, together with density functional theory calculations, reveals that the photochromic activity of BTE-EQ can be reversibly switched off and on by controlling the aggregation state during the AIE process, which provides a novel route to controlling the photochromism of diarylethenes.
  •  
25.
  • Chen, Shangzhi, et al. (författare)
  • On the anomalous optical conductivity dispersion of electrically conducting polymers : Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model
  • 2019
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 7:15, s. 4350-4362
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrically conducting polymers (ECPs) are becoming increasingly important in areas such as optoelectronics, biomedical devices, and energy systems. Still, their detailed charge transport properties produce an anomalous optical conductivity dispersion that is not yet fully understood in terms of physical model equations for the broad range optical response. Several modifications to the classical Drude model have been proposed to account for a strong non-Drude behavior from terahertz (THz) to infrared (IR) ranges, typically by implementing negative amplitude oscillator functions to the model dielectric function that effectively reduce the conductivity in those ranges. Here we present an alternative description that modifies the Drude model via addition of positive-amplitude Lorentz oscillator functions. We evaluate this so-called Drude-Lorentz (DL) model based on the first ultra-wide spectral range ellipsometry study of ECPs, spanning over four orders of magnitude: from 0.41 meV in the THz range to 5.90 eV in the ultraviolet range, using thin films of poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos) as a model system. The model could accurately fit the experimental data in the whole ultrawide spectral range and provide the complex anisotropic optical conductivity of the material. Examining the resonance frequencies and widths of the Lorentz oscillators reveals that both spectrally narrow vibrational resonances and broader resonances due to localization processes contribute significantly to the deviation from the Drude optical conductivity dispersion. As verified by independent electrical measurements, the DL model accurately determines the electrical properties of the thin film, including DC conductivity, charge density, and (anisotropic) mobility. The ellipsometric method combined with the DL model may thereby become an effective and reliable tool in determining both optical and electrical properties of ECPs, indicating its future potential as a contact-free alternative to traditional electrical characterization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 190
Typ av publikation
tidskriftsartikel (181)
forskningsöversikt (9)
Typ av innehåll
refereegranskat (186)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ågren, Hans (10)
Crispin, Xavier (9)
Fahlman, Mats (8)
Fabiano, Simone (7)
Berggren, Magnus (7)
Moth-Poulsen, Kasper ... (7)
visa fler...
Inganäs, Olle (6)
Liu, Xianjie (6)
Müller, Christian, 1 ... (6)
Vomiero, Alberto (6)
Li, Xin (6)
Wang, Ergang, 1981 (6)
Pedersen, Henrik (5)
Ederth, Thomas (5)
Jonsson, Magnus (5)
Gao, Feng (5)
Musumeci, Chiara (4)
Baryshnikov, Glib (4)
Jafari, Mohammad Jav ... (4)
Ouyang, Liangqi (4)
Brooke, Robert, 1989 ... (4)
Sardar, Samim (4)
Ahuja, Rajeev, 1965- (3)
Zhao, Dan (3)
Tang, Shi (3)
Hagfeldt, Anders (3)
Zhao, Haiguang (3)
Karlsson, Maths, 197 ... (3)
Albinsson, Bo, 1963 (3)
Anthony, John E. (3)
Paulsen, Bryan D. (3)
Rivnay, Jonathan (3)
Zhang, Rui (3)
Angel Nino, Miguel (3)
Kowalik, Iwona Agnie ... (3)
Jesus Luque, Francis ... (3)
Edman, Ludvig (3)
Erhart, Paul, 1978 (3)
Yuan, Zhongcheng (3)
Wang, Chuan Fei (3)
Baryshnikov, Gleb V. (3)
Minaev, Boris F. (3)
Brooke, Robert (3)
Kang, Evan (3)
Gryszel, Maciej (3)
Arvanitis, Dimitri, ... (3)
Lin, Yuan-Chih, 1987 (3)
Shi, Shengwei (3)
Wan, Li (3)
Ma, Dongge (3)
visa färre...
Lärosäte
Linköpings universitet (71)
Chalmers tekniska högskola (36)
Uppsala universitet (32)
Kungliga Tekniska Högskolan (27)
Luleå tekniska universitet (10)
Umeå universitet (9)
visa fler...
Stockholms universitet (8)
Lunds universitet (8)
RISE (6)
Karolinska Institutet (3)
Göteborgs universitet (2)
Karlstads universitet (2)
Linnéuniversitetet (1)
Högskolan i Borås (1)
visa färre...
Språk
Engelska (190)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (171)
Teknik (40)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy