SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2073 4360 "

Sökning: L773:2073 4360

  • Resultat 1-25 av 195
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aarstad, Olav, et al. (författare)
  • Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils
  • 2017
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Alginate and cellulose nanofibrils (CNF) are attractive materials for tissue engineering and regenerative medicine. CNF gels are generally weaker and more brittle than alginate gels, while alginate gels are elastic and have high rupture strength. Alginate properties depend on their guluronan and mannuronan content and their sequence pattern and molecular weight. Likewise, CNF exists in various qualities with properties depending on, e.g., morphology and charge density. In this study combinations of three types of alginate with different composition and two types of CNF with different charge and degree of fibrillation have been studied. Assessments of the composite gels revealed that attractive properties like high rupture strength, high compressibility, high gel rigidity at small deformations (Young’s modulus), and low syneresis was obtained compared to the pure gels. The effects varied with relative amounts of CNF and alginate, alginate type, and CNF quality. The largest effects were obtained by combining oxidized CNF with the alginates. Hence, by combining the two biopolymers in composite gels, it is possible to tune the rupture strength, Young’s modulus, syneresis, as well as stability in physiological saline solution, which are all important properties for the use as scaffolds in tissue engineering.
  •  
2.
  • Adnan, Mohammed Mostafa, et al. (författare)
  • The Structure, Morphology, and Complex Permittivity of Epoxy Nanodielectrics with In Situ Synthesized Surface-Functionalized SiO2
  • 2021
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Epoxy nanocomposites have demonstrated promising properties for high-voltage insulation applications. An in situ approach to the synthesis of epoxy-SiO2 nanocomposites was employed, where surface-functionalized SiO2 (up to 5 wt.%) is synthesized directly in the epoxy. The dispersion of SiO2 was found to be affected by both the pH and the coupling agent used in the synthesis. Hierarchical clusters of SiO2 (10–60 nm) formed with free-space lengths of 53–105 nm (increasing with pH or SiO2 content), exhibiting both mass and surface-fractal structures. Reducing the amount of coupling agent resulted in an increase in the cluster size (~110 nm) and the free-space length (205 nm). At room temperature, nanocomposites prepared at pH 7 exhibited up to a 4% increase in the real relative permittivity with increasing SiO2 content, whereas those prepared at pH 11 showed up to a 5% decrease with increasing SiO2 content. Above the glass transition, all the materials exhibited low-frequency dispersion effect resulting in electrode polarization, which was amplified in the nanocomposites. Improvements in the dielectric properties were found to be not only dependent on the state of dispersion, but also the structure and morphology of the inorganic nanoparticles. 
  •  
3.
  • Al-Rudainy, Basel, et al. (författare)
  • Impact of lignin content on the properties of hemicellulose hydrogels
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemicellulose is a promising renewable raw material for the production of hydrogels. This polysaccharide exists in large amounts in various waste streams, in which they are usually impure and heavily diluted. Several downstream processing methods can be combined to concentrate and purify the hemicellulose. However, such an approach can be costly; hence, the effect of impurities on the formation and properties of hydrogels must be determined. Lignin usually exists in these waste streams as a major impurity that is also difficult to separate. This compound can darken hydrogels and decrease their swellability and reactivity, as shown in many studies. Other properties and effects of lignin impurities are equally important for the end application of hydrogels and the overall process economy. In this work, we examined the feasibility of producing hydrogels from hemicelluloses that originated from sodium-based spent sulfite liquor. A combination of membrane filtration and anti-solvent precipitation was used to extract and purify various components. The influence of the purity of hemicellulose and the addition of lignosulfonates (emulated impurities in the downstream processing) to the crosslinking reaction mixture on the mechanical, thermal, and chemical properties of hydrogels was determined.
  •  
4.
  • Alagumalai, Vasudevan, et al. (författare)
  • Impact response and damage tolerance of hybrid glass/kevlar-fibre epoxy structural composites
  • 2021
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 13:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study is aimed at investigating the effect of hybridisation on Kevlar/E-Glass based epoxy composite laminate structures. Composites with 4 mm thickness and 16 layers of fibre (14 layers of E-glass centred and 2 outer layers of Kevlar) were fabricated using compression moulding technique. The fibre orientation of the Kevlar layers had 3 variations (0, 45 and 60°), whereas the E-glass fibre layers were maintained at 0° orientation. Tensile, flexural, impact (Charpy and Izod), interlaminar shear strength and ballistic impact tests were conducted. The ballistic test was performed using a gas gun with spherical hard body projectiles at the projectile velocity of 170 m/s. The pre-and post-impact velocities of the projectiles were measured using a high-speed camera. The energy absorbed by the composite laminates was further reported during the ballistic test, and a computerised tomographic scan was used to analyse the impact damage. The composites with 45° fibre orientation of Kevlar fibres showed better tensile strength, flexural strength, Charpy impact strength, and energy absorption. The energy absorbed by the composites with 45° fibre orientation was 58.68 J, which was 14% and 22% higher than the 0° and 60° oriented composites. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
5.
  • Alinejad, M., et al. (författare)
  • Lignin-based polyurethanes : Opportunities for bio-based foams, elastomers, coatings and adhesives
  • 2019
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyurethane chemistry can yield diverse sets of polymeric materials exhibiting a widerange of properties for various applications and market segments. Utilizing lignin as a polyol presentsan opportunity to incorporate a currently underutilized renewable aromatic polymer into theseproducts. In this work, we will review the current state of technology for utilizing lignin as a polyolreplacement in different polyurethane products. This will include a discussion of lignin structure,diversity, and modification during chemical pulping and cellulosic biofuels processes, approachesfor lignin extraction, recovery, fractionation, and modification/functionalization. We will discussthe potential of incorporation of lignins into polyurethane products that include rigid and flexiblefoams, adhesives, coatings, and elastomers. Finally, we will discuss challenges in incorporating ligninin polyurethane formulations, potential solutions and approaches that have been taken to resolvethose issues.
  •  
6.
  • Alipour, Nazanin, et al. (författare)
  • A Protein-Based Material from a New Approach Using Whole Defatted Larvae, and Its Interaction with Moisture
  • 2019
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A protein-based material created from a new approach using whole defatted larvae of the Black Soldier fly is presented. The larvae turn organic waste into their own biomass with high content of protein and lipids, which can be used as animal feed or for material production. After removing the larva lipid and adding a plasticizer, the ground material was compression molded into plates/films. The lipid, rich in saturated fatty acids, can be used in applications such as lubricants. The amino acids present in the greatest amounts were the essential amino acids aspartic acid/asparagine and glutamic acid/glutamine. Infrared spectroscopy revealed that the protein material had a high amount of strongly hydrogen-bonded beta-sheets, indicative of a highly aggregated protein. To assess the moisture-protein material interactions, the moisture uptake was investigated. The moisture uptake followed a BET type III moisture sorption isotherm, which could be fitted to the Guggenheim, Anderson and de Boer (GAB) equation. GAB, in combination with cluster size analysis, revealed that the water clustered in the material already at a low moisture content and the cluster increased in size with increasing relative humidity. The clustering also led to a peak in moisture diffusivity at an intermediate moisture uptake.
  •  
7.
  • Alqahtani, Fulwah Y, et al. (författare)
  • Capsule Independent Antimicrobial Activity Induced by Nanochitosan against Streptococcus pneumoniae
  • 2021
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 13:17, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Streptococcus pneumoniae remains a major cause of community-acquired pneumonia, meningitis, and other diseases, contributing significantly to high morbidity and mortality worldwide. Although it responds to antibiotics, their use is becoming limited due to the rise in antibiotic resistance, which necessitates the development of new therapeutics. Nanotechnology is used to counteract antimicrobial resistance. In this regard, polymeric nanoparticles (NPs) made of natural, biodegradable, biocompatible, and cationic polymers such as Chitosan (CNPs) exhibit wide-spectrum antimicrobial activity. Therefore, this study aimed to prepare CNPs, characterize their physiochemical characteristics: particle size (PZ), polydispersity index (PDI), and zeta potential (ZP), and investigate their antimicrobial activity against Streptococcus pneumoniae TIGR4 (virulent serotype 4) and its capsular mutant (∆cps).METHODS: CNPs were prepared at 1, 2.5, and 5 mg/mL concentrations using the ion gelation method. Then, PZ, PDI, and ZP were characterized using a Zetasizer. Transmission electron microscopy (TEM) was used to visualize the CNP's morphology. Broth and agar dilution methods were used to assess their antimicrobial activity. Cytotoxicity of prepared NPs on A549 cells and their effect on pneumococcal hemolysis were also investigated.RESULTS: Spherical CNPs were produced with PZ ranging from 133.3 nm ± 0.57 to 423 nm ± 12.93 PDI < 0.35, and ZP from 19 ± 0.115 to 27 ± 0.819. The prepared CNPs exhibited antibacterial activity against TIGR4 and its capsule mutant with a minimum inhibitory concentration (MIC90) of 0.5 to 2.5 mg/mL in a non-acidic environment. The hemolysis assay results revealed that CNPs reduced bacterial hemolysis in a concentration-dependent manner. Their mammalian cytotoxicity results indicated that CNPs formed from low concentrations of Chitosan (Cs) were cytocompatible.CONCLUSION: Nanochitosan particles showed anti-pneumococcal activity regardless of the presence of capsules. They resulted in a concentration-dependent reduction in bacterial hemolysis and were cytocompatible at a lower concentration of Cs. These findings highlight the potential of CNPs in the treatment of pneumococcal diseases.
  •  
8.
  • Alrifaiy, Ahmed, et al. (författare)
  • Polymer-based microfluidic devices for pharmacy, biology and tissue engineering
  • 2012
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 4:3, s. 1349-1398
  • Forskningsöversikt (refereegranskat)abstract
    • This paper reviews microfluidic technologies with emphasis on applications in the fields of pharmacy, biology, and tissue engineering. Design and fabrication of microfluidic systems are discussed with respect to specific biological concerns, such as biocompatibility and cell viability. Recent applications and developments on genetic analysis, cell culture, cell manipulation, biosensors, pathogen detection systems, diagnostic devices, high-throughput screening and biomaterial synthesis for tissue engineering are presented. The pros and cons of materials like polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polystyrene (PS), polycarbonate (PC), cyclic olefin copolymer (COC), glass, and silicon are discussed in terms of biocompatibility and fabrication aspects. Microfluidic devices are widely used in life sciences. Here, commercialization and research trends of microfluidics as new, easy to use, and cost-effective measurement tools at the cell/tissue level are critically reviewed.
  •  
9.
  • Aqrawe, Zaid, et al. (författare)
  • Stretchable Electronics Based on Laser Structured, Vapor Phase Polymerized PEDOT/Tosylate
  • 2020
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The fabrication of stretchable conductive material through vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) is presented alongside a method to easily pattern these materials with nanosecond laser structuring. The devices were constructed from sheets of vapor phase polymerized PEDOT doped with tosylate on pre-stretched elastomeric substrates followed by laser structuring to achieve the desired geometrical shape. Devices were characterized for electrical conductivity, morphology, and electrical integrity in response to externally applied strain. Fabricated PEDOT sheets displayed a conductivity of 53.1 ± 1.2 S cm−1; clear buckling in the PEDOT microstructure was observed as a result of pre-stretching the underlying elastomeric substrate; and the final stretchable electronic devices were able to remain electrically conductive with up to 100% of externally applied strain. The described polymerization and fabrication steps achieve highly processable and patternable functional conductive polymer films, which are suitable for stretchable electronics due to their ability to withstand externally applied strains of up to 100%.
  •  
10.
  • Ashour, Radwa M., et al. (författare)
  • Green Synthesis of Metal-Organic Framework Bacterial Cellulose Nanocomposites for Separation Applications
  • 2020
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal organic frameworks (MOFs) are porous crystalline materials that can be designed to act as selective adsorbents. Due to their high porosity they can possess very high adsorption capacities. However, overcoming the brittleness of these crystalline materials is a challenge for many industrial applications. In order to make use of MOFs for large-scale liquid phase separation processes they can be immobilized on solid supports. For this purpose, nanocellulose can be considered as a promising supporting material due to its high flexibility and biocompatibility. In this study a novel flexible nanocellulose MOF composite material was synthesised in aqueous media by a novel and straightforward in situ one-pot green method. The material consisted of MOF particles of the type MIL-100(Fe) (from Material Institute de Lavoisier, containing Fe(III) 1,3,5-benzenetricarboxylate) immobilized onto bacterial cellulose (BC) nanofibers. The novel nanocomposite material was applied to efficiently separate arsenic and Rhodamine B from aqueous solution, achieving adsorption capacities of 4.81, and 2.77 mg g‒1, respectively. The adsorption process could be well modelled by the nonlinear pseudo-second-order fitting.
  •  
11.
  • Avalos, Arturo Salazar, et al. (författare)
  • Superiorly Plasticized PVC/PBSA Blends through Crotonic and Acrylic Acid Functionalization of PVC
  • 2017
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Superior plasticization efficiency was achieved by a grafting from functionalization of the PVC backbone. This was deduced to a synergistic effect of internal plasticization and improved intermolecular interactions between PVC and an oligomeric poly(butylene succinate-co-adipate) ( PBSA) plasticizer. A mild grafting process for functionalization of the PVC chain by crotonic acid ( CA) or acrylic acid ( AA) was used. The formation of PVC-g-CA and PVC-g-AA was confirmed by FTIR and H-1 NMR. Grafting with the seemingly similar monomers, CA and AA, resulted in different macromolecular structures. AA is easily homopolymerized and long hydrophilic poly( acrylic acid) grafts are formed resulting in branched materials. Crotonic acid does not easily homopolymerize; instead, single crotonic acid units are located along the PVC chain, leading to basically linear PVC chains with pendant crotonic acid groups. The elongation of PVC-g-CA and PVC-g-AA in comparison to pure PVC were greatly increased from 6% to 128% and 167%, respectively, by the grafting reactions. Blending 20% ( w/w) PBSA with PVC, PVC-AA or PVC-CA further increased the elongation at break to 150%, 240% and 320%, respectively, clearly showing a significant synergistic effect in the blends with functionalized PVC. This is a clearly promising milestone towards environmentally friendly flexible PVC materials.
  •  
12.
  • Avella, Angelica, 1995, et al. (författare)
  • Substantial effect of water on radical melt crosslinking and rheological properties of poly(ε-caprolactone)
  • 2021
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 13:4, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • One-step reactive melt processing (REx) via radical reactions was evaluated with the aim of improving the rheological properties of poly(ε-caprolactone) (PCL). In particular, a waterassisted REx was designed under the hypothesis of increasing crosslinking efficiency with water as a low viscous medium in comparison with a slower PCL macroradicals diffusion in the melt state. To assess the effect of dry vs. water-assisted REx on PCL, its structural, thermo-mechanical and rheological properties were investigated. Water-assisted REx resulted in increased PCL gel fraction compared to dry REx (from 1–34%), proving the rationale under the formulated hypothesis. From dynamic mechanical analysis and tensile tests, the crosslink did not significantly affect the PCL mechanical performance. Dynamic rheological measurements showed that higher PCL viscosity was reached with increasing branching/crosslinking and the typical PCL Newtonian behavior was shifting towards a progressively more pronounced shear thinning. A complete transition from viscous-to solid-like PCL melt behavior was recorded, demonstrating that higher melt elasticity can be obtained as a function of gel content by controlled REx. Improvement in rheological properties offers the possibility of broadening PCL melt processability without hindering its recycling by melt processing.
  •  
13.
  • Babu, Karthik, et al. (författare)
  • A Review on the Flammability Properties of Carbon-Based Polymeric Composites : State-of-the-Art and Future Trends
  • 2020
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 12:7
  • Forskningsöversikt (refereegranskat)abstract
    • Carbon based fillers have attracted a great deal of interest in polymer composites because of their ability to beneficially alter properties at low filler concentration, good interfacial bonding with polymer, availability in different forms, etc. The property alteration of polymer composites makes them versatile for applications in various fields, such as constructions, microelectronics, biomedical, and so on. Devastations due to building fire stress the importance of flame-retardant polymer composites, since they are directly related to human life conservation and safety. Thus, in this review, the significance of carbon-based flame-retardants for polymers is introduced. The effects of a wide variety of carbon-based material addition (such as fullerene, CNTs, graphene, graphite, and so on) on reaction-to-fire of the polymer composites are reviewed and the focus is dedicated to biochar-based reinforcements for use in flame retardant polymer composites. Additionally, the most widely used flammability measuring techniques for polymeric composites are presented. Finally, the key factors and different methods that are used for property enhancement are concluded and the scope for future work is discussed.
  •  
14.
  • Bátori, Veronika, 1980-, et al. (författare)
  • The effect of glycerol, sugar and maleic anhydride on pectin-cellulose biofilms prepared from orange waste
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360.
  • Tidskriftsartikel (refereegranskat)abstract
    • This study was conducted to improve the properties of thin films prepared from orange waste by the solution casting method. The main focus was the elimination of holes in the film structure by establishing better cohesion between the major cellulosic and pectin fractions. For this, a previously developed method was improved first by the addition of sugar to promote pectin gelling, then by the addition of maleic anhydride. Principally, maleic anhydride was introduced to the films to induce cross-linking within the film structure. The effects of concentrations of sugar and glycerol as plasticizers and maleic anhydride as a cross-linking agent on the film characteristics were studied. Maleic anhydride improved the structure, resulting in a uniform film, and morphology studies showed better adhesion between components. However, it did not act as a cross-linking agent, but rather as a compatibilizer. The middle level (0.78%) of maleic anhydride content resulted in the highest tensile strength (26.65 ± 3.20 MPa) at low (7%) glycerol and high (14%) sugar levels and the highest elongation (28.48% ± 4.34%) at high sugar and glycerol levels. To achieve a uniform film surface with no holes present, only the lowest (0.39%) level of maleic anhydride was necessary. 
  •  
15.
  • Benyahia Erdal, Nejla, et al. (författare)
  • Hydrolytic Degradation of Porous Crosslinked Poly(epsilon-Caprolactone) Synthesized by High Internal Phase Emulsion Templating
  • 2020
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous poly(epsilon-caprolactone) (PCL) scaffolds were fabricated using the high internal polymerization emulsion (HIPE) technique. Bis(epsilon-caprolactone-4-yl) (BCY) was utilized as crosslinker. The crosslinking density and the volume fraction of the dispersed phase were varied in order to study the potential effect of these parameters on the hydrolytic degradation at 37 degrees C and 60 degrees C. After different hydrolysis times the remaining solid samples were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), while the degradation products in the aqueous aging solutions were analyzed by laser desorption ionization-mass spectrometry (LDI-MS). The effect of temperature on the degradation process and release of degradation products was, as expected, significant. The temperature effect was also shown by FTIR analysis that displayed a pronounced increase in the intensity of the hydroxyl-group absorption band after 70 days of hydrolysis at 60 degrees C indicating significant cleavage of the polymer chains. LDI-MS analysis proved the release of oligomers ranging from dimers to hexamers. The product patterns were similar, but the relativem/zsignal intensities increased with increasing time, temperature and crosslinking density, indicating larger amounts of released products. The latter is probably due to the decreasing degree of crystallinity as a function of amount of crosslinker. The porous structure and morphology of the scaffolds were lost during the aging. The higher the crosslinking density, the longer the scaffolds retained their original porous structure and morphology.
  •  
16.
  • Blasi-Romero, Anna, et al. (författare)
  • In Vitro Investigation of Thiol-Functionalized Cellulose Nanofibrils as a Chronic Wound Environment Modulator
  • 2021
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • There is currently a huge need for new, improved therapeutic approaches for the treatment of chronic wounds. One promising strategy is to develop wound dressings capable of modulating the chronic wound environment (e.g., by controlling the high levels of reactive oxygen species (ROS) and proteases). Here, we selected the thiol-containing amino acid cysteine to endow wood-derived cellulose nanofibrils (CNF) with bioactivity toward the modulation of ROS levels and protease activity. Cysteine was covalently incorporated into CNF and the functionalized material, herein referred as cys-CNF, was characterized in terms of chemical structure, degree of substitution, radical scavenging capacity, and inhibition of protease activity. The stability of the thiol groups was evaluated over time, and an in vitro cytotoxicity study with human dermal fibroblasts was performed to evaluate the safety profile of cys-CNF. Results showed that cys-CNF was able to efficiently control the activity of the metalloprotease collagenase and to inhibit the free radical DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), activities that were correlated with the presence of free thiol groups on the nanofibers. The stability study showed that the reactivity of the thiol groups challenged the bioactivity over time. Nevertheless, preparing the material as an aerogel and storing it in an inert atmosphere were shown to be valid approaches to increase the stability of the thiol groups in cys-CNF. No signs of toxicity were observed on the dermal fibroblasts when exposed to cys-CNF (concentration range 0.1-0.5 mg/mL). The present work highlights cys-CNF as a promising novel material for the development of bioactive wound dressings for the treatment of chronic wounds.
  •  
17.
  • Brooke, Robert, 1989-, et al. (författare)
  • Greyscale and paper electrochromic polymer displays by UV patterning
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4- ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.
  •  
18.
  • Budtova, Tatiana, et al. (författare)
  • Biorefinery Approach for Aerogels
  • 2020
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 12:12
  • Forskningsöversikt (refereegranskat)abstract
    • According to the International Energy Agency, biorefinery is “the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)”. In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels’ environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action “CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences”.
  •  
19.
  • Capezza, Antonio Jose, et al. (författare)
  • Extrusion of Porous Protein-Based Polymers and Their Liquid Absorption Characteristics
  • 2020
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of porous wheat gluten (WG) absorbent materials by means of extrusion processing is presented for the future development of sustainable superabsorbent polymers (SAPs). Different temperatures, formulations, and WG compositions were used to determine a useful protocol that provides the best combination of porosity and water swelling properties. The most optimal formulation was based on 50 wt.% WG in water that was processed at 80 degrees C as a mixture, which provided a porous core structure with a denser outer shell. As a green foaming agent, food-grade sodium bicarbonate was added during the processing, which allowed the formation of a more open porous material. This extruded WG material was able to swell 280% in water and, due to the open-cell structure, 28% with non-polar limonene. The results are paving the way towards production of porous bio macromolecular structures with high polar/non-polar liquid uptake, using extrusion as a solvent free and energy efficient production technique without toxic reagents.
  •  
20.
  • Carissimi, Guzmán, et al. (författare)
  • On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids : An Infrared Spectroscopy Study
  • 2020
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Silk fibroin from Bombyx mori caterpillar is an outstanding biocompatible polymer for the production of biomaterials. Its impressive combination of strength, flexibility, and degradability are related to the protein’s secondary structure, which may be altered during the manufacture of the biomaterial. The present study looks at the silk fibroin secondary structure during nanoparticle production using ionic liquids and high-power ultrasound using novel infrared spectroscopic approaches. The infrared spectrum of silk fibroin fibers shows that they are composed of 58% β-sheet, 9% turns, and 33% irregular and/or turn-like structures. When fibroin was dissolved in ionic liquids, its amide I band resembled that of soluble silk and no β-sheet absorption was detected. Silk fibroin nanoparticles regenerated from the ionic liquid solution exhibited an amide I band that resembled that of the silk fibers but had a reduced β-sheet content and a corresponding higher content of turns, suggesting an incomplete turn-to-sheet transition during the regeneration process. Both the analysis of the experimental infrared spectrum and spectrum calculations suggest a particular type of β-sheet structure that was involved in this deficiency, whereas the two other types of β-sheet structure found in silk fibroin fibers were readily formed.
  •  
21.
  • Chen, Genqiang, et al. (författare)
  • Bioconversion of waste fiber sludge to bacterial nanocellulose and use for reinforcement of CTMP paper sheets
  • 2017
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Utilization of bacterial nanocellulose (BNC) for large-scale applications is restricted by low productivity in static cultures and by the high cost of the medium. Fiber sludge, a waste stream from pulp and paper mills, was enzymatically hydrolyzed to sugar, which was used for the production of BNC by the submerged cultivation of Komagataeibacter xylinus. Compared with a synthetic glucose-based medium, the productivity of purified BNC from the fiber sludge hydrolysate using shake-flasks was enhanced from 0.11 to 0.17 g/(L × d), although the average viscometric degree of polymerization (DPv) decreased from 6760 to 6050. The cultivation conditions used in stirred-tank reactors (STRs), including the stirring speed, the airflow, and the pH, were also investigated. Using STRs, the BNC productivity in fiber-sludge medium was increased to 0.32 g/(L × d) and the DPv was increased to 6650. BNC produced from the fiber sludge hydrolysate was used as an additive in papermaking based on the chemithermomechanical pulp (CTMP) of birch. The introduction of BNC resulted in a significant enhancement of the mechanical strength of the paper sheets. With 10% (w/w) BNC in the CTMP/BNC mixture, the tear resistance was enhanced by 140%. SEM images showed that the BNC cross-linked and covered the surface of the CTMP fibers, resulting in enhanced mechanical strength.
  •  
22.
  • Chen, Wei, et al. (författare)
  • Molecularly Imprinted Polymers with Stimuli-Responsive Affinity : Progress and Perspectives
  • 2015
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 7:9, s. 1689-1715
  • Tidskriftsartikel (refereegranskat)abstract
    • Intelligent stimuli-responsive molecularly imprinted polymers (SR-MIPs) have attracted considerable research interest in recent years due to the potential applications in drug delivery, biotechnology and separation sciences. This review comprehensively summarizes various SR-MIPs, including the design and applications of thermo-responsive MIPs, pH-responsive MIPs, photo-responsive MIPs, biomolecule-responsive MIPs and ion-responsive MIPs. Besides the development of current SR-MIPs, the advantages as well as the disadvantages of current SR-MIPs were also displayed from different angles, especially preparation methods and application fields. We believe this review will be helpful to guide the design, development and application of SR-MIPs.
  •  
23.
  • Claverie, Marion, et al. (författare)
  • Marine-Derived Polymeric Materials and Biomimetics : An Overview
  • 2020
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 12:5
  • Forskningsöversikt (refereegranskat)abstract
    • The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.
  •  
24.
  • Coja, Michael, et al. (författare)
  • Using Waveguides to Model the Dynamic Stiffness of Pre-Compressed Natural Rubber Vibration Isolators
  • 2021
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 13:11
  • Tidskriftsartikel (refereegranskat)abstract
    • A waveguide model for a pre-compressed cylindrical natural rubber vibration isolator is developed within a wide frequency range-20 to 2000 Hz-and for a wide pre-compression domain-from vanishing to the maximum in service, that is 20%. The problems of simultaneously modeling the pre-compression and frequency dependence are solved by applying a transformation of the pre-compressed isolator into a globally equivalent linearized, homogeneous, and isotropic form, thereby reducing the original, mathematically arduous, and complex problem into a vastly simpler assignment while using a straightforward waveguide approach to satisfy the boundary conditions by mode-matching. A fractional standard linear solid is applied as the visco-elastic natural rubber model while using a Mittag-Leffler function as the stress relaxation function. The dynamic stiffness is found to depend strongly on the frequency and pre-compression. The former is resulting in resonance phenomena such as peaks and troughs, while the latter exhibits a low-frequency magnitude stiffness increase in addition to peak and trough shifts with increased pre-compressions. Good agreement with nonlinear finite element results is obtained for the considered frequency and pre-compression range in contrast to the results of standard waveguide approaches.
  •  
25.
  • Costa, Carolina, et al. (författare)
  • Emulsion Formation and Stabilization by Biomolecules : The Leading Role of Cellulose.
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Emulsion stabilization by native cellulose has been mainly hampered because of its insolubility in water. Chemical modification is normally needed to obtain water-soluble cellulose derivatives. These modified celluloses have been widely used for a range of applications by the food, cosmetic, pharmaceutic, paint and construction industries. In most cases, the modified celluloses are used as rheology modifiers (thickeners) or as emulsifying agents. In the last decade, the structural features of cellulose have been revisited, with particular focus on its structural anisotropy (amphiphilicity) and the molecular interactions leading to its resistance to dissolution. The amphiphilic behavior of native cellulose is evidenced by its capacity to adsorb at the interface between oil and aqueous solvent solutions, thus being capable of stabilizing emulsions. In this overview, the fundamentals of emulsion formation and stabilization by biomolecules are briefly revisited before different aspects around the emerging role of cellulose as emulsion stabilizer are addressed in detail. Particular focus is given to systems stabilized by native cellulose, either molecularly-dissolved or not (Pickering-like effect).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 195
Typ av publikation
tidskriftsartikel (170)
forskningsöversikt (24)
konstnärligt arbete (1)
recension (1)
Typ av innehåll
refereegranskat (193)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Das, Oisik (15)
Medronho, Bruno (9)
Skrifvars, Mikael, 1 ... (7)
Hakkarainen, Minna (6)
Åkesson, Dan, 1970- (6)
Hedenqvist, Mikael S ... (6)
visa fler...
Gubanski, Stanislaw, ... (5)
Oksman, Kristiina, 1 ... (5)
Zamani, Akram (5)
Försth, Michael (5)
Berto, Filippo (5)
Larsson, Anette, 196 ... (4)
Adamopoulos, Stergio ... (4)
Berglund, Linn (4)
Hosseinpourpia, Reza ... (4)
Oksman, Kristiina (4)
Chinga-Carrasco, Gar ... (4)
Ramakrishna, Seeram (4)
Finne Wistrand, Anna ... (3)
Taherzadeh, Mohammad ... (3)
Nicholls, Ian A. (3)
Kari, Leif (3)
Sas, Gabriel (3)
Lindman, Björn (3)
Kumar Ramamoorthy, S ... (3)
Alagumalai, Vasudeva ... (3)
Shanmugam, Vigneshwa ... (3)
Malmström, Eva, Prof ... (3)
Romano, Anabela (3)
Alves, L. (3)
Kádár, Roland, 1982 (3)
Esmaeely Neisiany, R ... (3)
Kharaziha, Mahshid (2)
Edlund, Ulrica, 1972 ... (2)
Barsoum, Imad (2)
Serdyuk, Yuriy, 1963 (2)
Neisiany, Rasoul Esm ... (2)
Lin, Chia-feng (2)
Nierstrasz, Vincent, ... (2)
Johansson, Eva (2)
Strømme, Maria, 1970 ... (2)
Mahboubi, Amir (2)
Shah, Faiz Ullah, 19 ... (2)
Olsson, Richard (2)
Zaman, Muhammad (2)
Krishnamoorthy, Yoga ... (2)
Ganesan, Velmurugan (2)
Alves, Luis (2)
Sellergren, Börje (2)
Jones, Dennis (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (46)
Luleå tekniska universitet (35)
RISE (25)
Chalmers tekniska högskola (24)
Högskolan i Borås (17)
Uppsala universitet (14)
visa fler...
Mittuniversitetet (14)
Lunds universitet (13)
Stockholms universitet (8)
Linnéuniversitetet (8)
Sveriges Lantbruksuniversitet (8)
Malmö universitet (4)
Linköpings universitet (3)
Karolinska Institutet (3)
Umeå universitet (2)
Karlstads universitet (2)
Göteborgs universitet (1)
Högskolan Kristianstad (1)
Örebro universitet (1)
Jönköping University (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (195)
Forskningsämne (UKÄ/SCB)
Teknik (122)
Naturvetenskap (84)
Medicin och hälsovetenskap (14)
Lantbruksvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy