SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2160 3308 "

Sökning: L773:2160 3308

  • Resultat 1-25 av 63
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aasen, David, et al. (författare)
  • Milestones toward Majorana-based quantum computing
  • 2016
  • Ingår i: Physical Review X. - 2160-3308. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current, (2) validation of a prototype topological qubit, and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and read out schemes as well.
  •  
2.
  • Alessi, D., et al. (författare)
  • Efficient Excitation of Gain-Saturated Sub-9-nm-Wavelength Tabletop Soft-X-Ray Lasers and Lasing Down to 7.36 nm
  • 2011
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 1:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We have demonstrated the efficient generation of sub-9-nm-wavelength picosecond laser pulses of microjoule energy at 1-Hz repetition rate with a tabletop laser. Gain-saturated lasing was obtained at λ=8.85  nm in nickel-like lanthanum ions excited by collisional electron-impact excitation in a precreated plasma column heated by a picosecond optical laser pulse of 4-J energy. Furthermore, isoelectronic scaling along the lanthanide series resulted in lasing at wavelengths as short as λ=7.36  nm. Simulations show that the collisionally broadened atomic transitions in these dense plasmas can support the amplification of subpicosecond soft-x-ray laser pulses.
  •  
3.
  • Andresen, Juan Carlos, et al. (författare)
  • Existence of a Thermodynamic Spin-Glass Phase in the Zero-Concentration Limit of Anisotropic Dipolar Systems
  • 2014
  • Ingår i: Physical Review X. - 2160-3308. ; 4:4, s. 041016-
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of ordering in dilute dipolar interacting systems dates back to the work of Debye and is one of the most basic, oldest and as-of-yet unsettled problems in magnetism. While spin-glass order is readily observed in several RKKY-interacting systems, dipolar spin glasses are the subject of controversy and ongoing scrutiny, e.g., in LiHoxY1-xF4, a rare-earth randomly diluted uniaxial (Ising) dipolar system. In particular, it is unclear if the spin-glass phase in these paradigmatic materials persists in the limit of zero concentration or not. We study an effective model of LiHoxY1-xF4 using large-scale Monte Carlo simulations that combine parallel tempering with a special cluster algorithm tailored to overcome the numerical difficulties that occur at extreme dilutions. We find a paramagnetic to spin-glass phase transition for all Ho+ ion concentrations down to the smallest concentration numerically accessible, 0.1%, and including Ho+ ion concentrations that coincide with those studied experimentally up to 16.7%. Our results suggest that randomly diluted dipolar Ising systems have a spin-glass phase in the limit of vanishing dipole concentration, with a critical temperature vanishing linearly with concentration. The agreement of our results with mean-field theory testifies to the irrelevance of fluctuations in interactions strengths, albeit being strong at small concentrations, to the nature of the low-temperature phase and the functional form of the critical temperature of dilute anisotropic dipolar systems. Deviations from linearity in experimental results at the lowest concentrations are discussed.
  •  
4.
  • Barillot, T., et al. (författare)
  • Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule
  • 2021
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of suddenly ionized molecules undergoing extremely fast electron hole (or hole) dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pump-x-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first tentative observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the effective hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics.
  •  
5.
  • Besse, Jean-Claude, et al. (författare)
  • Parity Detection of Propagating Microwave Fields
  • 2020
  • Ingår i: Physical Review X. - 2160-3308. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The parity of the number of elementary excitations present in a quantum system provides important insights into its physical properties. Parity measurements are used, for example, to tomographically reconstruct quantum states or to determine if the decay of an excitation has occurred, information that can be used for quantum error correction in computation or communication protocols. Here, we demonstrate a versatile parity detector for propagating microwaves, which distinguishes between radiation fields containing an even or odd number n of photons, both in a single-shot measurement and without perturbing the parity of the detected field. We showcase applications of the detector for direct Wigner tomography of propagating microwaves and heralded generation of Schrodinger cat states. This parity detection scheme is applicable over a broad frequency range and may prove useful, for example, for heralded or fault-tolerant quantum communication protocols.
  •  
6.
  • Bhattacharjee, Satadeep, et al. (författare)
  • Theoretical Analysis of Inertia-like Switching in Magnets : Applications to a Synthetic Antiferromagnet
  • 2012
  • Ingår i: Physical Review X. - 2160-3308. ; 2:1, s. 011013-
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetization dynamics of a synthetic antiferromagnet subjected to a short-magnetic-field pulse has been studied by using a combination of first principles calculations and atomistic spin-dynamics simulations. We observe switching phenomena on the time scale of tens of picoseconds, and inertia-like behavior in the magnetization dynamics. We explain the latter in terms of a dynamic redistribution of magnetic energy from the applied-field pulse to other possible energy terms, such as the exchange interaction and the magnetic anisotropy, without invoking concepts such as the inertia of an antiferro-magnetic vector. We also demonstrate that such dynamics can also be observed in a ferromagnetic material where the incident-field pulse pumps energy to the magnetic anisotropy.
  •  
7.
  • Bollmark, Gunnar, et al. (författare)
  • Solving 2D and 3D lattice models of correlated fermions : combining matrix product states with mean-field theory
  • 2023
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Correlated electron states are at the root of many important phenomena including unconventional superconductivity (USC), where electron pairing arises from repulsive interactions. Computing the properties of correlated electrons, such as the critical temperature Tc for the onset of USC, efficiently and reliably from the microscopic physics with quantitative methods remains a major challenge for almost all models and materials. In this theoretical work, we combine matrix product states (MPS) with static mean field (MF) to provide a solution to this challenge for quasi-one-dimensional (Q1D) systems: two- and three-dimensional materials comprised of weakly coupled correlated 1D fermions. This MPS+MF framework for the ground state and thermal equilibrium properties of Q1D fermions is developed and validated for attractive Hubbard systems first, and further enhanced via analytical field theory. We then deploy it to compute Tc for superconductivity in 3D arrays of weakly coupled, doped, and repulsive Hubbard ladders. The MPS+MF framework thus enables the quantitative study of USC and high-Tc superconductivity—and potentially many more correlated phases—in fermionic Q1D systems based directly on their microscopic parameters, in ways inaccessible to previous methods. This approach further allows one to treat competing macroscopic orders, such as superconducting and insulating ones, on an equal footing. Benchmarks of the framework using auxiliary-field quantum Monte Carlo techniques show that the overestimation of, e.g., Tc due to its mean-field component, is near constant in microscopic parameters. These features of the MPS+MF approach to correlated fermions open up the possibility of designing deliberately optimized Q1D superconductors, from experiments in ultracold gases to synthesizing new materials.
  •  
8.
  • Brizzolara, Stefano, et al. (författare)
  • Fiber Tracking Velocimetry for Two-Point Statistics of Turbulence
  • 2021
  • Ingår i: Physical Review X. - : American Physical Society (APS). - 2160-3308. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose and validate a novel experimental technique to measure two-point statistics of turbulent flows. It consists of spreading rigid fibers in the flow and tracking their position and orientation in time and is therefore named “fiber tracking velocimetry.” By choosing different fiber lengths, i.e., within the inertial or dissipative range of scales, the statistics of turbulence fluctuations at the selected length scale can be probed accurately by simply measuring the fiber velocity at its two ends and projecting it along the transverse-to-fiber direction. By means of fully resolved direct numerical simulations and experiments, we show that these fiber-based transverse velocity increments are statistically equivalent to the (unperturbed) flow transverse velocity increments. Moreover, we show that the turbulent energy-dissipation rate can be accurately measured exploiting sufficiently short fibers. The technique is tested against standard particle tracking velocimetry (PTV) of flow tracers with excellent agreement. Our technique overcomes the well-known problem of PTV to probe two-point statistics reliably because of the fast relative diffusion in turbulence that prevents the mutual distance between particles to remain constant at the length scale of interest. This problem, making it difficult to obtain converged statistics for a fixed separation distance, is even more dramatic for natural flows in open domains. A prominent example is oceanic currents, where drifters (i.e., the tracer-particle counterpart used in field measurements) disperse quickly, but at the same time their number has to be limited to save costs. Inspired by our laboratory experiments, we propose pairs of connected drifters as a viable option to solve the issue.
  •  
9.
  • Brown, Matthew, et al. (författare)
  • Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface
  • 2016
  • Ingår i: Physical Review X. - 2160-3308. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li + , Na + , K + , and Cs + ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.
  •  
10.
  • Brydon, P. M. R., et al. (författare)
  • Loop Currents and Anomalous Hall Effect from Time-Reversal Symmetry-Breaking Superconductivity on the Honeycomb Lattice
  • 2019
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We study a tight-binding model on the honeycomb lattice of chiral d-wave superconductivity that breaks time-reversal symmetry. Because of its nontrivial sublattice structure, we show that it is possible to construct a gauge-invariant time-reversal-odd bilinear of the pairing potential. The existence of this bilinear reflects the sublattice polarization of the pairing state. We show that it generates persistent loop current correlations around each lattice site and opens a topological mass gap at the Dirac points, resembling Haldane's model of the anomalous quantum Hall effect. In addition to the usual chiral d-wave edge states, there also exist electronlike edge resonances due to the topological mass gap. We show that the presence of loop-current correlations directly leads to a nonzero intrinsic ac Hall conductivity, which produces the polar Kerr effect without an external magnetic field. Similar results also hold for the nearest-neighbor chiral p-wave pairing. We briefly discuss the relevance of our results to superconductivity in twisted bilayer graphene.
  •  
11.
  • Cabello, Adan, et al. (författare)
  • Loophole-Free Bell Test Based on Local Precertification of Photon's Presence
  • 2012
  • Ingår i: Physical Review X. - 2160-3308. ; 2:2, s. 021010-
  • Tidskriftsartikel (refereegranskat)abstract
    • A loophole-free violation of Bell inequalities is of fundamental importance for demonstrating quantum nonlocality and long-distance device-independent secure communication. However, transmission losses represent a fundamental limitation for photonic loophole-free Bell tests. A local precertification of the presence of the photons immediately before the local measurements may solve this problem. We show that local precertification is feasible by integrating three current technologies: (i) enhanced single-photon down-conversion to locally create a flag photon, (ii) nanowire-based superconducting single-photon detectors for a fast flag detection, and (iii) superconducting transition-edge sensors to close the detection loophole. We carry out a precise space-time analysis of the proposed scheme, showing its viability and feasibility.
  •  
12.
  • Chang, C. W. S., et al. (författare)
  • Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity
  • 2020
  • Ingår i: Physical Review X. - 2160-3308. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spontaneous parametric down-conversion (SPDC) has been a key enabling technology in exploring quantum phenomena and their applications for decades. For instance, traditional SPDC, which splits a high-energy pump photon into two lower-energy photons, is a common way to produce entangled photon pairs. Since the early realizations of SPDC, researchers have thought to generalize it to higher order, e.g., to produce entangled photon triplets. However, directly generating photon triplets through a single SPDC process has remained elusive. Here, using a flux-pumped superconducting parametric cavity, we demonstrate direct three-photon SPDC, with photon triplets generated in a single cavity mode or split between multiple modes. With strong pumping, the states can be quite bright, with flux densities exceeding 60 photons per second per hertz. The observed states are strongly non-Gaussian, which has important implications for potential applications. In the single-mode case, we observe a triangular star-shaped distribution of quadrature voltages, indicative of the long-predicted "star state." The observed state shows strong third-order correlations, as expected for a state generated by a cubic Hamiltonian. By pumping at the sum frequency of multiple modes, we observe strong three-body correlations between multiple modes, strikingly, in the absence of second-order correlations. We further analyze the third-order correlations under mode transformations by the symplectic symmetry group, showing that the observed transformation properties serve to "fingerprint" the specific cubic Hamiltonian that generates them. The observed non-Gaussian, third-order correlations represent an important step forward in quantum optics and may have a strong impact on quantum communication with microwave fields as well as continuous-variable quantum computation.
  •  
13.
  • Chen, Geng, et al. (författare)
  • Experimental Test of the State Estimation-Reversal Tradeoff Relation in General Quantum Measurements
  • 2014
  • Ingår i: Physical Review X. - 2160-3308. ; 4:5, s. 021043-
  • Tidskriftsartikel (refereegranskat)abstract
    • When a measurement has limited strength, only partial information, regarding the initial state, is extracted, and, correspondingly, there is a probability to reverse its effect on the system and retrieve the original state. Recently, a clear and direct quantitative description of this complementary relationship, in terms of a tradeoff relation, was developed by Y. K. Cheong and S. W. Lee. [Phys. Rev. Lett. 109, 150402 (2012)]. Here, this tradeoff relation is experimentally verified using polarization-encoded single photons from a quantum dot. Measurement operators representing a complete range, from not affecting the system to a projection to a single polarization state, are realized. In addition, for each measurement operator, an optimal reversal operator is also implemented. The upper bound of the tradeoff relation is mapped to experimental parameters representing the measurement strength. Our results complement the theoretical work and provide a hands-on characterization of general quantum measurements.
  •  
14.
  • Christle, David J., et al. (författare)
  • Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface
  • 2017
  • Ingår i: Physical Review X. - : AMER PHYSICAL SOC. - 2160-3308. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.
  •  
15.
  • Cole, J. M., et al. (författare)
  • Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam
  • 2018
  • Ingår i: Physical Review X. - 2160-3308. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (μ 500 MeV) with an intense laser pulse (a0 > 10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy > 30 MeV.
  •  
16.
  • Dabelow, Lennart, et al. (författare)
  • Irreversibility in Active Matter Systems : Fluctuation Theorem and Mutual Information
  • 2019
  • Ingår i: Physical Review X. - : AMER PHYSICAL SOC. - 2160-3308. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider a Brownian particle which, in addition to being in contact with a thermal bath, is driven by fluctuating forces which stem from active processes in the system, such as self-propulsion or collisions with other active particles. These active fluctuations do not fulfill a fluctuation-dissipation relation and therefore play the role of a nonequilibrium environment, which keeps the system permanently out of thermal equilibrium even in the absence of external forces. We investigate how the out-of-equilibrium character of the active matter system and the associated irreversibility is reflected in the trajectories of the Brownian particle. Specifically, we analyze the log ratio of path probabilities for observing a certain particle trajectory forward in time versus observing its time-reversed twin trajectory. For passive Brownian motion, it is well known that this path probability ratio quantifies irreversibility in terms of entropy production. For active Brownian motion, we show that in addition to the usual entropy produced in the thermal environment, the path probability ratio contains a contribution to irreversibility from mutual information production between the particle trajectory and the history of the nonequilibrium environment. The resulting irreversibility measure fulfills an integral fluctuation theorem and a secondlaw-like relation. When deriving and discussing these relations, we keep in mind that the active fluctuations can occur either due to a suspension of active particles pushing around a passive colloid or due to active self-propulsion of the particle itself; we point out the similarities and differences between these two situations. We obtain explicit expressions for active fluctuations modeled by an Ornstein-Uhlenbeck process. Finally, we illustrate our general results by analyzing a Brownian particle which is trapped in a static or moving harmonic potential.
  •  
17.
  • D'Ambrosio, Vincenzo, et al. (författare)
  • Experimental Implementation of a Kochen-Specker Set of Quantum Tests
  • 2013
  • Ingår i: Physical Review X. - 2160-3308. ; 3:1, s. 011012-
  • Tidskriftsartikel (refereegranskat)abstract
    • The conflict between classical and quantum physics can be identified through a series of yes-no tests on quantum systems, without it being necessary that these systems be in special quantum states. Kochen-Specker (KS) sets of yes-no tests have this property and provide a quantum-versus-classical advantage that is free of the initialization problem that affects some quantum computers. Here, we report the first experimental implementation of a complete KS set that consists of 18 yes-no tests on four-dimensional quantum systems and show how to use the KS set to obtain a state-independent quantum advantage. We first demonstrate the unique power of this KS set for solving a task while avoiding the problem of state initialization. Such a demonstration is done by showing that, for 28 different quantum states encoded in the orbital-angular-momentum and polarization degrees of freedom of single photons, the KS set provides an impossible-to-beat solution. In a second experiment, we generate maximally contextual quantum correlations by performing compatible sequential measurements of the polarization and path of single photons. In this case, state independence is demonstrated for 15 different initial states. Maximum contextuality and state independence follow from the fact that the sequences of measurements project any initial quantum state onto one of the KS set's eigenstates. Our results show that KS sets can be used for quantum-information processing and quantum computation and pave the way for future developments. DOI: 10.1103/PhysRevX.3.011012
  •  
18.
  • De Domenico, Manlio, et al. (författare)
  • Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems
  • 2015
  • Ingår i: Physical Review X. - 2160-3308. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To comprehend interconnected systems across the social and natural sciences, researchers have developed many powerful methods to identify functional modules. For example, with interaction data aggregated into a single network layer, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow processes. However, many interconnected systems consist of agents or components that exhibit multiple layers of interactions, possibly from several different processes. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here, we propose a method based on a compression of network flows that can identify modular flows both within and across layers in nonaggregated multilayer networks. Our numerical experiments on synthetic multilayer networks, with some layers originating from the same interaction process, show that the analysis fails in aggregated networks or when treating the layers separately, whereas the multilayer method can accurately identify modules across layers that originate from the same interaction process. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks with topics as layers: scientists affiliated with the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method uncovers connected topics and reveals smaller modules with more overlap that better capture the actual organization.
  •  
19.
  • Finetti, P., et al. (författare)
  • Pulse duration of seeded free electron lasers
  • 2017
  • Ingår i: Physical Review X. - 2160-3308. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seeded FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. The measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.
  •  
20.
  • Gallos, Lazaros K., et al. (författare)
  • How People Interact in Evolving Online Affiliation Networks
  • 2012
  • Ingår i: Physical Review X. - 2160-3308. ; 2:3, s. 031014-
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.
  •  
21.
  • Gonoskov, Arkady, 1984, et al. (författare)
  • Ultrabright GeV Photon Source via Controlled Electromagnetic Cascades in Laser-Dipole Waves
  • 2017
  • Ingår i: Physical Review X. - 2160-3308. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Electromagnetic cascades have the potential to act as a high-energy photon source of unprecedented brightness. Such a source would offer new experimental possibilities in fundamental science, but in the cascade process radiation reaction and rapid electron-positron plasma production seemingly restrict the efficient production of photons to sub-GeV energies. Here, we show how to overcome these energetic restrictions and how to create a directed GeV photon source, with unique capabilities as compared to existing sources. Our new source concept is based on a controlled interplay between the cascade and anomalous radiative trapping. Using specially designed advanced numerical models supported with analytical estimates, we demonstrate that the concept becomes feasible at laser powers of around 7 PW, which is accessible at soon-to-be-available facilities. A higher peak power of 40 PW can provide 10(9) photons with GeV energies in a well-collimated 3-fs beam, achieving peak brilliance 9 x 10(24) ph s(-1) mrad(-2) mm(-2)/0.1%BW.
  •  
22.
  • Greenberg, Eran, et al. (författare)
  • Pressure-Induced Site-Selective Mott Insulator-Metal Transition in Fe2O3
  • 2018
  • Ingår i: Physical Review X. - : AMER PHYSICAL SOC. - 2160-3308. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide experimental and theoretical evidence for a pressure-induced Mott insulator-metal transition in Fe2O3 characterized by site-selective delocalization of the electrons. Density functional plus dynamical mean field theory (DFT + DMFT) calculations, along with Mossbauer spectroscopy, x-ray diffraction, and electrical transport measurements on Fe2O3 up to 100 GPa, reveal this site-selective Mott transition between 50 and 68 GPa, such that the metallization can be described by ((FE3+HS)-F-VI)(2)O-3 [R (3) over barc structure]-amp;gt;(50) (GPa) (Fe-VIII(3+HS) Fe-VI(M))O-3 [P2(1)/n structure]-amp;gt;(68 Gpa)(Fe-VI(M))(2)O-3[Aba2/PPv structure]. Within the P2(1)/n crystal structure, characterized by two distinct coordination sites (VI and VIII), we observe equal abundances of ferric ions (Fe3+) and ions having delocalized electrons (Fe-M), and only at higher pressures is a fully metallic high-pressure structure obtained, all at room temperature. Thereby, the transition is characterized by delocalization/metallization of the 3d electrons on half the Fe sites, with a site-dependent collapse of local moments. Above approximately 50 GPa, Fe2O3 is a strongly correlated metal with reduced electron mobility (large band renormalizations) of m*/m similar to 4 and 6 near the Fermi level. Importantly, upon decompression, we observe a site-selective (metallic) to conventional Mott insulator phase transition (Fe-VIII(3+HS) Fe-VI(M))O-3 -amp;gt;(50) (GPa)(Fe-VIII(3+HS) Fe-VI(3+HS))O-3 within the same P2(1)/n structure, indicating a decoupling of the electronic and lattice degrees of freedom. Our results offer a model for understanding insulator-metal transitions in correlated electron materials, showing that the interplay of electronic correlations and crystal structure may result in rather complex behavior of the electronic and magnetic states of such compounds.
  •  
23.
  •  
24.
  • Gösweiner, Christian, et al. (författare)
  • Tuning Nuclear Quadrupole Resonance : A Novel Approach for the Design of Frequency-Selective MRI Contrast Agents
  • 2018
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between water protons and suitable quadrupolar nuclei (QN) can lead to quadrupole relaxation enhancement (QRE) of proton spins, provided the resonance condition between both spin transitions is fulfilled. This effect could be utilized as a frequency selective mechanism in novel, responsive T-1 shortening contrast agents (CAs) for magnetic resonance imaging (MRI). In particular, the proposed contrast mechanism depends on the applied external flux density-a property that can be exploited by special field-cycling MRI scanners. For the design of efficient CA molecules, exhibiting narrow and pronounced peaks in the proton T-1 relaxation dispersion, the nuclear quadrupole resonance (NQR) properties, as well as the spin dynamics of the system QN-H-1, have to be well understood and characterized for the compounds in question. In particular, the energy-level structure of the QN is a central determinant for the static flux densities at which the contrast enhancement appears. The energy levels depend both on the QN and the electronic environment, i.e., the chemical bonding structure in the CA molecule. In this work, the NQR properties of a family of promising organometallic compounds containing Bi-209 as QN have been characterized. Important factors like temperature, chemical structure, and chemical environment have been considered by NQR spectroscopy and ab initio quantum chemistry calculations. The investigated Bi-aryl compounds turned out to fulfill several crucial requirements: NQR transition frequency range applicable to clinical 1.5- and 3 T MRI systems, low temperature dependency, low toxicity, and tunability in frequency by chemical modification.
  •  
25.
  • Götzfried, J., et al. (författare)
  • Physics of High-Charge Electron Beams in Laser-Plasma Wakefields
  • 2020
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser wakefield acceleration (LWFA) and its particle-driven counterpart, particle or plasma wakefield acceleration (PWFA), are commonly treated as separate, though related, branches of high-gradient plasma-based acceleration. However, novel proposed schemes are increasingly residing at the interface of both concepts where the understanding of their interplay becomes crucial. Here, we present a comprehensive study of this regime, which we may term laser-plasma wakefields. Using datasets of hundreds of shots, we demonstrate the influence of beam loading on the spectral shape of electron bunches. Similar results are obtained using both 100-TW-class and few-cycle lasers, highlighting the scale invariance of the involved physical processes. Furthermore, we probe the interplay of dual electron bunches in the same or in two subsequent plasma periods under the influence of beam loading. We show that, with decreasing laser intensity, beam loading transitions to a beam-dominated regime, where the first bunch acts as the main driver of the wakefield. This transition is evidenced experimentally by a varying acceleration of a low-energy witness beam with respect to the charge of a high-energy drive beam in a spatially separate gas target. Our results also present an important step in the development of LWFA using controlled injection in a shock front. The electron beams in this study reach record performance in terms of laser-to-beam energy transfer efficiency (up to 10%), spectral charge density (regularly exceeding 10  pC MeV−1), and angular charge density (beyond 300  pC μsr−1 at 220 MeV). We provide an experimental scaling for the accelerated charge per terawatt (TW) of laser power, which approaches 2 nC at 300 TW. With the expanding availability of petawatt-class (PW) lasers, these beam parameters will become widely accessible. Thus, the physics of laser-plasma wakefields is expected to become increasingly relevant, as it provides new paths toward low-emittance beam generation for future plasma-based colliders or light sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 63

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy