SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2190 4979 OR L773:2190 4987 "

Sökning: L773:2190 4979 OR L773:2190 4987

  • Resultat 1-25 av 67
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aleina, F. C., et al. (författare)
  • A stochastic model for the polygonal tundra based on Poisson-Voronoi diagrams
  • 2013
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 4:2, s. 187-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Subgrid processes occur in various ecosystems and landscapes but, because of their small scale, they are not represented or poorly parameterized in climate models. These local heterogeneities are often important or even fundamental for energy and carbon balances. This is especially true for northern peatlands and in particular for the polygonal tundra, where methane emissions are strongly influenced by spatial soil heterogeneities. We present a stochastic model for the surface topography of polygonal tundra using Poisson-Voronoi diagrams and we compare the results with available recent field studies. We analyze seasonal dynamics of water table variations and the landscape response under different scenarios of precipitation income. We upscale methane fluxes by using a simple idealized model for methane emission. Hydraulic interconnectivities and large-scale drainage may also be investigated through percolation properties and thresholds in the Voronoi graph. The model captures the main statistical characteristics of the landscape topography, such as polygon area and surface properties as well as the water balance. This approach enables us to statistically relate large-scale properties of the system to the main small-scale processes within the single polygons.
  •  
2.
  • Annan, James D., et al. (författare)
  • What could we learn about climate sensitivity from variability in the surface temperature record?
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:3, s. 709-719
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine what can be learnt about climate sensitivity from variability in the surface air temperature record over the instrumental period, from around 1880 to the present. While many previous studies have used trends in observational time series to constrain equilibrium climate sensitivity, it has also been argued that temporal variability may also be a powerful constraint. We explore this question in the context of a simple widely used energy balance model of the climate system. We consider two recently proposed summary measures of variability and also show how the full information content can be optimally used in this idealised scenario. We find that the constraint provided by variability is inherently skewed, and its power is inversely related to the sensitivity itself, discriminating most strongly between low sensitivity values and weakening substantially for higher values. It is only when the sensitivity is very low that the variability can provide a tight constraint. Our investigations take the form of perfect model experiments, in which we make the optimistic assumption that the model is structurally perfect and all uncertainties (including the true parameter values and nature of internal variability noise) are correctly characterised. Therefore the results might be interpreted as a best-case scenario for what we can learn from variability, rather than a realistic estimate of this. In these experiments, we find that for a moderate sensitivity of 2.5 degrees C, a 150-year time series of pure internal variability will typically support an estimate with a 5 %-95% range of around 5 degrees C (e.g. 1.9-6.8 degrees C). Total variability including that due to the forced response, as inferred from the detrended observational record, can provide a stronger constraint with an equivalent 5 %-95 % posterior range of around 4 degrees C (e.g. 1.8-6.0 degrees C) even when uncertainty in aerosol forcing is considered. Using a statistical summary of variability based on autocorrelation and the magnitude of residuals after detrending proves somewhat less powerful as a constraint than the full time series in both situations. Our results support the analysis of variability as a potentially useful tool in helping to constrain equilibrium climate sensitivity but suggest caution in the interpretation of precise results.
  •  
3.
  • Armstrong McKay, David I., et al. (författare)
  • Resolving ecological feedbacks on the ocean carbon sink in Earth system models
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:3, s. 797-818
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a negative feedback on climate change. Earth system models project that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved CO2 and as biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here, we use a recently developed extension of the cGEnIE (carbon-centric Grid Enabled Integrated Earth system model), ecoGEnIE, featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on particulate organic carbon (POC) export in response to climate change. We find that including TDR increases cumulative POC export relative to default runs due to increased nutrient recycling (+ similar to 1.3 %), whereas ECOGEM decreases cumulative POC export by enabling a shift to smaller plankton classes (- similar to 0.9 %). However, interactions with carbonate chemistry cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs (- similar to 1.0 %), whereas ECOGEM leads to a larger sink (+ similar to 0.2 %). Combining TDR and ECOGEM results in a net strengthening of POC export (+ similar to 0.1 %) and a net reduction in carbon sink (- similar to 0.7 %) relative to default. These results illustrate the degree to which ecological dynamics and biodiversity modulate the strength of the biological pump, and demonstrate that Earth system models need to incorporate ecological complexity in order to resolve non-linear climate-biosphere feedbacks.
  •  
4.
  • Azar, Christian, 1969, et al. (författare)
  • On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP
  • 2012
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 3:2, s. 139-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Metrics for comparing greenhouse gases are analyzed, with a particular focus on the integrated temperature change potential (IGTP) following a call from IPCC to investigate this metric. It is shown that the global warming potential (GWP) and IGTP are asymptotically equal when the time horizon approaches infinity when standard assumptions about a constant background atmosphere are used. The difference between IGTP and GWP is estimated for different greenhouse gases using an upwelling diffusion energy balance model with different assumptions on the climate sensitivity and the parameterization governing the rate of ocean heat uptake. It is found that GWP and IGTP differ by some 10% for CH4 (for a time horizon of less than 500 yr), and that the relative difference between GWP and IGTP is less for gases with a longer atmospheric life time. Further, it is found that the relative difference between IGTP and GWP increases with increasing rates of ocean heat uptake and increasing climate sensitivity since these changes increase the inertia of the climate system. Furthermore, it is shown that IGTP is equivalent to the sustained global temperature change potential (SGTP) under standard assumptions when estimating GWPs. We conclude that while it matters little for abatement policy whether IGTP, SGTP or GWP is used when making trade-offs, it is more important to decide whether society should use a metric based on time integrated effects such as GWP, a "snapshot metric" as GTP, or metrics where both economics and physical considerations are taken into account. Of equal importance is the question of how to choose the time horizon, regardless of the chosen metric. For both these overall questions, value judgments are needed.
  •  
5.
  • Barcikowska, M. J., et al. (författare)
  • Chances in the future summer Mediterranean climate: contribution of teleconnections and local factors
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:1, s. 161-181
  • Tidskriftsartikel (refereegranskat)abstract
    • This study analyzes future climate for the Mediterranean region projected with the high-resolution coupled CM2.5 model, which incorporates a new and improved land model (LM3). The simulated climate changes suggest pronounced warming and drying over most of the region. However, the changes are distinctly smaller than those of the CMIP5 multi-model ensemble. In addition, the changes over much of southeast and central Europe indicate very modest warming compared to the CMIP5 projections and also a tendency toward wetter conditions. These differences indicate a possible role of factors such as land surface-atmospheric interactions in these regions. Our analysis also highlights the importance of correctly projecting the magnitude of changes in the summer North Atlantic Oscillation, which has the capacity to partly offset anthropogenic warming and drying over the western and central Mediterranean. Nevertheless, the projections suggest a decreasing influence of local atmospheric dynamics and teleconnections in maintaining the regional temperature and precipitation balance, in particular over arid regions like the eastern and southern Mediterranean, which show a local maximum of warming and drying. The intensification of the heat low in these regions rather suggests an increasing influence of warming land surface on the local surface atmospheric circulation and progressing desertification.
  •  
6.
  • Barcikowska, Monika J., et al. (författare)
  • Euro-Atlantic winter storminess and precipitation extremes under 1.5 degrees C vs. 2 degrees C warming scenarios
  • 2018
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 9:2, s. 679-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe winter storms in combination with precipitation extremes pose a serious threat to Europe. Located at the southeastern exit of the North Atlantic's storm track, European coastlines are directly exposed to impacts by high wind speeds, storm floods and coastal erosion. In this study we analyze potential changes in simulated winter storminess and extreme precipitation, which may occur under 1.5 or 2 degrees C warming scenarios. Here we focus on a first simulation suite of the atmospheric model CAM5 performed within the HAPPI project and evaluate how changes of the horizontal model resolution impact the results regarding atmospheric pressure, storm tracks, wind speed and precipitation extremes. The comparison of CAM5 simulations with different resolutions indicates that an increased horizontal resolution to 0.25 degrees not only refines regional-scale information but also improves large-scale atmospheric circulation features over the Euro-Atlantic region. The zonal bias in monthly pressure at mean sea level and wind fields, which is typically found in low-resolution models, is considerably reduced. This allows us to analyze potential changes in regional-to local-scale extreme wind speeds and precipitation in a more realistic way. Our analysis of the future response for the 2 degrees C warming scenario generally confirms previous model simulations suggesting a poleward shift and intensification of the meridional circulation in the Euro-Atlantic region. Additional analysis suggests that this shift occurs mainly after exceeding the 1.5 degrees C global warming level, when the midlatitude jet stream manifests a strengthening northeastward. At the same time, this northeastern shift of the storm tracks allows an intensification and northeastern expansion of the Azores high, leading to a tendency of less precipitation across the Bay of Biscay and North Sea. Regions impacted by the strengthening of the midlatitude jet, such as the northwestern coasts of the British Isles, Scandinavia and the Norwegian Sea, and over the North Atlantic east of Newfoundland, experience an increase in the mean as well as daily and sub-daily precipitation, wind extremes and storminess, suggesting an important influence of increasing storm activity in these regions in response to global warming.
  •  
7.
  • Barfuss, Wolfram, et al. (författare)
  • Sustainable use of renewable resources in a stylized social-ecological network model under heterogeneous resource distribution
  • 2017
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 8:2, s. 255-264
  • Tidskriftsartikel (refereegranskat)abstract
    • Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social-ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models.
  •  
8.
  • Bayer, Anita D., et al. (författare)
  • Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions
  • 2017
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 8:1, s. 91-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use and land-cover (LUC) changes are a key uncertainty when attributing changes in measured atmospheric CO2 concentration to its sinks and sources and must also be much better understood to determine the possibilities for land-based climate change mitigation, especially in the light of human demand on other land-based resources. On the spatial scale typically used in terrestrial ecosystem models (0.5 or 1°) changes in LUC over time periods of a few years or more can include bidirectional changes on the sub-grid level, such as the parallel expansion and abandonment of agricultural land (e.g. in shifting cultivation) or cropland-grassland conversion (and vice versa). These complex changes between classes within a grid cell have often been neglected in previous studies, and only net changes of land between natural vegetation cover, cropland and pastures accounted for, mainly because of a lack of reliable high-resolution historical information on gross land transitions, in combination with technical limitations within the models themselves. In the present study we applied a state-of-The-Art dynamic global vegetation model with a detailed representation of croplands and carbon-nitrogen dynamics to quantify the uncertainty in terrestrial ecosystem carbon stocks and fluxes arising from the choice between net and gross representations of LUC. We used three frequently applied global, one recent global and one recent European LUC datasets, two of which resolve gross land transitions, either in Europe or in certain tropical regions. When considering only net changes, land-use-Transition uncertainties (expressed as 1 standard deviation around decadal means of four models) in global carbon emissions from LUC (ELUC) are ±0.19, ±0.66 and ±0.47gCa1 in the 1980s, 1990s and 2000s, respectively, or between 14 and 39% LUC. Carbon stocks at the end of the 20th century vary by ±11 PgC for vegetation and ±37PgC for soil C due to the choice of LUC reconstruction, i.e. around 3% of the respective C pools. Accounting for sub-grid (gross) land conversions significantly increased the effect of LUC on global and European carbon stocks and fluxes, most noticeably enhancing global cumulative ELUC by 33PgC(1750-2014) and entailing a significant reduction in carbon stored in vegetation, although the effect on soil C stocks was limited. Simulations demonstrated that assessments of historical carbon stocks and fluxes are highly uncertain due to the choice of LUC reconstruction and that the consideration of different contrasting LUC reconstructions is needed to account for this uncertainty. The analysis of gross, in addition to net, land-use changes showed that the full complexity of gross land-use changes is required in order to accurately predict the magnitude of LUC change emissions. This introduces technical challenges to process-based models and relies on extensive information regarding historical land-use transitions.
  •  
9.
  • Botta, Nicola, 1961, et al. (författare)
  • The impact of uncertainty on optimal emission policies
  • 2018
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 9:2, s. 525-542
  • Tidskriftsartikel (refereegranskat)abstract
    • We apply a computational framework for specifying and solving sequential decision problems to study the impact of three kinds of uncertainties on optimal emission policies in a stylized sequential emission problem. We find that uncertainties about the implementability of decisions on emission reductions (or increases) have a greater impact on optimal policies than uncertainties about the availability of effective emission reduction technologies and uncertainties about the implications of trespassing critical cumulated emission thresholds. The results show that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. In other words, delaying emission reductions to the point in time when effective technologies will become available is suboptimal when these uncertainties are accounted for rigorously. By contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make early emission reductions less rewarding.
  •  
10.
  • Braakhekke, Maarten C., et al. (författare)
  • Nitrogen leaching from natural ecosystems under global change : A modelling study
  • 2017
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 8:4, s. 1121-1139
  • Tidskriftsartikel (refereegranskat)abstract
    • To study global nitrogen (N) leaching from natural ecosystems under changing N deposition, climate, and atmospheric CO2, we performed a factorial model experiment for the period 1901-2006 with the N-enabled global terrestrial ecosystem model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). In eight global simulations, we used either the true transient time series of N deposition, climate, and atmospheric CO2 as input or kept combinations of these drivers constant at initial values. The results show that N deposition is globally the strongest driver of simulated N leaching, individually causing an increase of 88% by 1997-2006 relative to pre-industrial conditions. Climate change led globally to a 31%increase in N leaching, but the size and direction of change varied among global regions: Leaching generally increased in regions with high soil organic carbon storage and high initial N status, and decreased in regions with a positive trend in vegetation productivity or decreasing precipitation. Rising atmospheric CO2 generally caused decreased N leaching (33% globally), with strongest effects in regions with high productivity and N availability. All drivers combined resulted in a rise of N leaching by 73% with strongest increases in Europe, eastern North America and South-East Asia, where N deposition rates are highest. Decreases in N leaching were predicted for the Amazon and northern India. We further found that N loss by fire regionally is a large term in the N budget, associated with lower N leaching, particularly in semi-arid biomes. Predicted global N leaching from natural lands rose from 13.6 TgNyr-1 in 1901-1911 to 18.5 TgNyr-1 in 1997-2006, accounting for reductions of natural land cover. Ecosystem N status (quantified as the reduction of vegetation productivity due to N limitation) shows a similar positive temporal trend but large spatial variability. Interestingly, this variability is more strongly related to vegetation type than N input. Similarly, the relationship between N status and (relative) N leaching is highly variable due to confounding factors such as soil water fluxes, fire occurrence, and growing season length. Nevertheless, our results suggest that regions with very high N deposition rates are approaching a state of N saturation.
  •  
11.
  • Claremar, Björn, 1980-, et al. (författare)
  • Ship Emissions and the use of current air cleaning technology : contributions to air pollution and acidification in the Baltic Sea
  • 2017
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 8, s. 901-919
  • Tidskriftsartikel (refereegranskat)abstract
    • The shipping sector is a significant contributor to emissions of air pollutants in marine and coastal regions.In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledgeof dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion andconcentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogenfrom the international maritime sector in the Baltic Sea and the North Sea, have been made for the years 2011to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentrationand dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2concentration and dry deposition of sulfur represented up to 80% of the total in some regions. WHO guidelinesfor annual concentrations were not trespassed for any analysed pollutant, other than PM2:5 in the Netherlands,Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km50 km, there maybe higher concentrations locally close to intense shipping lanes.Wet deposition is more spread and less sensitiveto model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30%of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close toshipping lanes showed some underestimations and missed maximums, probably due to resolution of the modeland underestimated ship emissions.A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreasesthe atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, thecleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet theair quality criteria but their consequences for the marine environment are largely unknown. The resulting potentialof future acidification in the Baltic Sea, both from atmospheric deposition and from scrubber water alongthe shipping lanes, based on different assumptions about sulfur content in fuel, scrubber usage, and increasedshipping density has been assessed. The increase in deposition for different shipping and scrubber scenariosdiffers for the basins in the Baltic Sea, with highest potential of acidification in the southern basins with hightraffic. The proportion of ocean-acidifying sulfur from ships increases when taking scrubber water into accountand the major reason for increasing acidifying nitrogen from ships is increasing ship traffic. Also, with the implementationof emission control for nitrogen, the effect of scrubbers on acidification is evident. This study alsogenerates a database of shipping and scrubber scenarios for atmospheric deposition and scrubber exhaust fromthe period 2011 to 2050.
  •  
12.
  • De Luca, Paolo, et al. (författare)
  • Compound warm-dry arid cold-wet events over the Mediterranean
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:3, s. 793-805
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mediterranean (MED) Basin is a climate change hotspot that has seen drying and a pronounced increase in heatwaves over the last century. At the same time, it is experiencing increased heavy precipitation during wintertime cold spells. Understanding and quantifying the risks from compound events over the MED is paramount for present and future disaster risk reduction measures. Here, we apply a novel method to study compound events based on dynamical systems theory and analyse compound temperature and precipitation events over the MED from 1979 to 2018. The dynamical systems analysis quantifies the strength of the coupling between different atmospheric variables over the MED. Further, we consider compound warm-dry anomalies in summer and cold-wet anomalies in winter. Our results show that these warm-dry and cold-wet compound days are associated with large values of the temperature-precipitation coupling parameter of the dynamical systems analysis. This indicates that there is a strong interaction between temperature and precipitation during compound events. In winter, we find no significant trend in the coupling between temperature and precipitation. However in summer, we find a significant upward trend which is likely driven by a stronger coupling during warm and dry days. Thermodynamic processes associated with long-term MED warming can best explain the trend, which intensifies compound warm-dry events.
  •  
13.
  • De Luca, Paolo, et al. (författare)
  • Concurrent wet and dry hydrological extremes at the global scale
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:1, s. 251-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman-Monteith model (sc_PDSI_pm), covering the period 1950-2014, at 2.5 degrees horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet-dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet-dry episodes are significant (p value << 0.01). The most geographically widespread wet-dry event was associated with the strong La Nina in 2010. This caused wet-dry anomalies across a land area of 21 million km(2) with documented high-impact flooding and drought episodes spanning diverse regions. To further elucidate the interplay of wet and dry extremes at a grid cell scale, we introduce two new metrics: the wet-dry (WD) ratio and the extreme transition (ET) time intervals. The WD ratio measures the relative occurrence of wet or dry extremes, whereas ET quantifies the average separation time of hydrological extremes with opposite signs. The WD ratio shows that the incidence of wet extremes dominates over dry extremes in the USA, northern and southern South America, northern Europe, north Africa, western China, and most of Australia. Conversely, dry extremes are more prominent in most of the remaining regions. The median ET for wet to dry is similar to 27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet-dry hydrological extremes and leading modes of climate variability, namely the El Nina-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar influence globally, with the former significantly impacting (p value < 0.05) a larger area (18.1 % of total sc_PDSI_pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.
  •  
14.
  • Di Baldassarre, Giuliano, et al. (författare)
  • Drought and flood in the Anthropocene : Feedback mechanisms in reservoir operation
  • 2017
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 8:1, s. 225-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract. Over the last few decades, numerous studies have investigated human impacts on drought and flood events, while conversely other studies have explored human responses to hydrological extremes. Yet, there is still little understanding about the dynamics resulting from their interplay, i.e. both impacts and responses. Current quantitative methods therefore can fail to assess future risk dynamics and, as a result, while risk reduction strategies built on these methods often work in the short term, they tend to lead to unintended consequences in the long term. In this paper, we review the puzzles and dynamics resulting from the interplay of society and hydrological extremes, and describe an initial effort to model hydrological extremes in the Anthropocene. In particular, we first discuss the need for a novel approach to explicitly account for human interactions with both drought and flood events, and then present a stylized model simulating the reciprocal effects between hydrological extremes and changing reservoir operation rules. Lastly, we highlight the unprecedented opportunity offered by the current proliferation of big data to unravel the coevolution of hydrological extremes and society across scales and along gradients of social and hydrological conditions.
  •  
15.
  • Donges, Jonathan F., et al. (författare)
  • Earth system modeling with endogenous and dynamic human societies : the copan
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:2, s. 395-413
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes.
  •  
16.
  • Donges, Jonathan, et al. (författare)
  • Taxonomies for structuring models for World-Earth systems analysis of the Anthropocene : subsystems, their interactions and social-ecological feedback loops
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:4, s. 1115-1137
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Anthropocene, the social dynamics of human societies have become critical to understanding planetary-scale Earth system dynamics. The conceptual foundations of Earth system modelling have externalised social processes in ways that now hinder progress in understanding Earth resilience and informing governance of global environmental change. New approaches to global modelling of the human World are needed to address these challenges. The current modelling landscape is highly diverse and heterogeneous, ranging from purely biophysical Earth system models, to hybrid macro-economic integrated assessments models, to a plethora of models of socio-cultural dynamics. World-Earth models capable of simulating complex and entangled human-Earth system processes of the Anthropocene are currently not available. They will need to draw on and selectively integrate elements from the diverse range of fields and approaches; thus, future World-Earth modellers require a structured approach to identify, classify, select, combine and critique model components from multiple modelling traditions. Here, we develop taxonomies for ordering the multitude of societal and biophysical subsystems and their interactions. We suggest three taxa for modelled subsystems: (i) biophysical, where dynamics is usually represented by natural laws of physics, chemistry or ecology (i.e. the usual components of Earth system models); (ii) socio-cultural, dominated by processes of human behaviour, decision-making and collective social dynamics (e.g. politics, institutions, social networks and even science itself); and (iii) socio-metabolic, dealing with the material interactions of social and biophysical subsystems (e.g. human bodies, natural resources and agriculture). We show how higher-order taxonomies can be derived for classifying and describing the interactions between two or more subsystems. This then allows us to highlight the kinds of social-ecological feedback loops where new modelling efforts need to be directed. As an example, we apply the taxonomy to a stylised World-Earth system model that endogenises the socially transmitted choice of discount rates in a greenhouse gas emissions game to illustrate the effects of social-ecological feedback loops that are usually not considered in current modelling efforts. The proposed taxonomy can contribute to guiding the design and operational development of more comprehensive World-Earth models for understanding Earth resilience and charting sustainability transitions within planetary boundaries and other future trajectories in the Anthropocene.
  •  
17.
  • Drüke, Markus, et al. (författare)
  • The long-term impact of transgressing planetary boundaries on biophysical atmosphere–land interactions
  • 2024
  • Ingår i: Earth System Dynamics. - 2190-4979 .- 2190-4987. ; 15:2, s. 467-483
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activities have had a significant impact on Earth's systems and processes, leading to a transition of Earth's state from the relatively stable Holocene epoch to the Anthropocene. The planetary boundary framework characterizes major risks of destabilization, particularly in the core dimensions of climate and biosphere change. Land system change, including deforestation and urbanization, alters ecosystems and impacts the water and energy cycle between the land surface and atmosphere, while climate change can disrupt the balance of ecosystems and impact vegetation composition and soil carbon pools. These drivers also interact with each other, further exacerbating their impacts. Earth system models have been used recently to illustrate the risks and interacting effects of transgressing selected planetary boundaries, but a detailed analysis is still missing. Here, we study the impacts of long-term transgressions of the climate and land system change boundaries on the Earth system using an Earth system model with an incorporated detailed dynamic vegetation model. In our centennial-scale simulation analysis, we find that transgressing the land system change boundary results in increases in global temperatures and aridity. Furthermore, this transgression is associated with a substantial loss of vegetation carbon, exceeding 200 Pg C, in contrast to conditions considered safe. Concurrently, the influence of climate change becomes evident as temperatures surge by 2.7–3.1 °C depending on the region. Notably, carbon dynamics are most profoundly affected within the large carbon reservoirs of the boreal permafrost areas, where carbon emissions peak at 150 Pg C. While a restoration scenario to reduce human pressure to meet the planetary boundaries of climate change and land system change proves beneficial for carbon pools and global mean temperature, a transgression of these boundaries could lead to profoundly negative effects on the Earth system and the terrestrial biosphere. Our results suggest that respecting both boundaries is essential for safeguarding Holocene-like planetary conditions that characterize a resilient Earth system and are in accordance with the goals of the Paris Climate Agreement.
  •  
18.
  • Engström, Kerstin, et al. (författare)
  • Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework
  • 2016
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 7:4, s. 893-915
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) using socio-economic data from the SSPs and climate data from the RCPs (representative concentration pathways). The simulated range of global cropland is 893-2380 Mha in 2100 (± 1 standard deviation), with the main uncertainties arising from differences in the socio-economic conditions prescribed by the SSP scenarios and the assumptions that underpin the translation of qualitative SSP storylines into quantitative model input parameters. Uncertainties in the assumptions for population growth, technological change and cropland degradation were found to be the most important for global cropland, while uncertainty in food consumption had less influence on the results. The uncertainties arising from climate variability and the differences between climate change scenarios do not strongly affect the range of global cropland futures. Some overlap occurred across all of the conditional probabilistic futures, except for those based on SSP3. We conclude that completely different socio-economic and climate change futures, although sharing low to medium population development, can result in very similar cropland areas on the aggregated global scale.
  •  
19.
  • Engström, Kerstin, et al. (författare)
  • Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance
  • 2017
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 8:3, s. 773-799
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.
  •  
20.
  • Faranda, Davide, et al. (författare)
  • Minimal dynamical systems model of the Northern Hemisphere jet stream via embedding of climate data
  • 2019
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 10:3, s. 555-567
  • Tidskriftsartikel (refereegranskat)abstract
    • We derive a minimal dynamical systems model for the Northern Hemisphere midlatitude jet dynamics by embedding atmospheric data and by investigating its properties (bifurcation structure, stability, local dimensions) for different atmospheric flow regimes. The derivation is a three-step process: first, we obtain a 1-D description of the midlatitude jet stream by computing the position of the jet at each longitude using ERA-Interim. Next, we use the embedding procedure to derive a map of the local jet position dynamics. Finally, we introduce the coupling and stochastic effects deriving from both atmospheric turbulence and topographic disturbances to the jet. We then analyze the dynamical properties of the model in different regimes: one that gives the closest representation of the properties extracted from real data; one featuring a stronger jet (strong coupling); one featuring a weaker jet (weak coupling); and one with modified topography. Our model, notwithstanding its simplicity, provides an instructive description of the dynamical properties of the atmospheric jet.
  •  
21.
  • Gröger, Matthias, et al. (författare)
  • Coupled regional Earth system modeling in the Baltic Sea region
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:3, s. 939-973
  • Forskningsöversikt (refereegranskat)abstract
    • Nonlinear responses to externally forced climate change are known to dampen or amplify the local climate impact due to complex cross-compartmental feedback loops in the Earth system. These feedbacks are less well represented in the traditional stand-alone atmosphere and ocean models on which many of today's regional climate assessments rely (e.g., EURO-CORDEX, NOSCCA and BACC II). This has promoted the development of regional climate models for the Baltic Sea region by coupling different compartments of the Earth system into more comprehensive models. Coupled models more realistically represent feedback loops than the information imposed on the region by prescribed boundary conditions and, thus, permit more degrees of freedom. In the past, several coupled model systems have been developed for Europe and the Baltic Sea region. This article reviews recent progress on model systems that allow two-way communication between atmosphere and ocean models; models for the land surface, including the terrestrial biosphere; and wave models at the air-sea interface and hydrology models for water cycle closure. However, several processes that have mostly been realized by one-way coupling to date, such as marine biogeochemistry, nutrient cycling and atmospheric chemistry (e.g., aerosols), are not considered here. In contrast to uncoupled stand-alone models, coupled Earth system models can modify mean near-surface air temperatures locally by up to several degrees compared with their stand-alone atmospheric counterparts using prescribed surface boundary conditions. The representation of small-scale oceanic processes, such as vertical mixing and sea-ice dynamics, appears essential to accurately resolve the air-sea heat exchange over the Baltic Sea, and these parameters can only be provided by online coupled high-resolution ocean models. In addition, the coupling of wave models at the ocean-atmosphere interface allows for a more explicit formulation of small-scale to microphysical processes with local feedbacks to water temperature and large-scale processes such as oceanic upwelling. Over land, important climate feedbacks arise from dynamical terrestrial vegetation changes as well as the implementation of land-use scenarios and afforestation/deforestation that further alter surface albedo, roughness length and evapotranspiration. Furthermore, a good representation of surface temperatures and roughness length over open sea and land areas is critical for the representation of climatic extremes such as heavy precipitation, storms, or tropical nights (defined as nights where the daily minimum temperature does not fall below 20gC), and these parameters appear to be sensitive to coupling. For the present-day climate, many coupled atmosphere-ocean and atmosphere-land surface models have demonstrated the added value of single climate variables, in particular when low-quality boundary data were used in the respective stand-alone model. This makes coupled models a prospective tool for downscaling climate change scenarios from global climate models because these models often have large biases on the regional scale. However, the coupling of hydrology models to close the water cycle remains problematic, as the accuracy of precipitation provided by atmosphere models is, in most cases, insufficient to realistically simulate the runoff to the Baltic Sea without bias adjustments. Many regional stand-alone ocean and atmosphere models are tuned to suitably represent present-day climatologies rather than to accurately simulate climate change. Therefore, more research is required into how the regional climate sensitivity (e.g., the models' response to a given change in global mean temperature) is affected by coupling and how the spread is altered in multi-model and multi-scenario ensembles of coupled models compared with uncoupled ones.
  •  
22.
  • Hagemann, Stefan, et al. (författare)
  • Soil-frost-enabled soil-moisture-precipitation feedback over northern high latitudes
  • 2016
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 7:3, s. 611-625
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. The currently observed global warming is most pronounced in the Arctic region and is projected to persist during the coming decades due to anthropogenic CO2 input. This warming will certainly have effects on the ecosystems of the vast permafrost areas of the high northern latitudes. The quantification of such effects, however, is still an open question. This is partly due to the complexity of the system, including several feedback mechanisms between land and atmosphere. In this study we contribute to increasing our understanding of such land-atmosphere interactions using an Earth system model (ESM) which includes a representation of cold-region physical soil processes, especially the effects of freezing and thawing of soil water on thermal and hydrological states and processes. The coupled atmosphere-land models of the ESM of the Max Planck Institute for Meteorology, MPI-ESM, have been driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without newly implemented cold-region soil processes. Results show a large improvement in the simulated discharge. On the one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction in soil moisture enables a positive feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil-moisture-atmosphere feedbacks have previously not been the focus of research on the high latitudes. These results point out the importance of high-latitude physical processes at the land surface for regional climate.
  •  
23.
  • Heck, Vera, et al. (författare)
  • Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal
  • 2016
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 7:4, s. 783-796
  • Tidskriftsartikel (refereegranskat)abstract
    • The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 degrees C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a safe level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.
  •  
24.
  • Heinze, Christoph, et al. (författare)
  • ESD Reviews : Climate feedbacks in the Earth system and prospects for their evaluation
  • 2019
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 10:3, s. 379-452
  • Forskningsöversikt (refereegranskat)abstract
    • Earth system models (ESMs) are key tools for providing climate projections under different scenarios of human-induced forcing. ESMs include a large number of additional processes and feedbacks such as biogeochemical cycles that traditional physical climate models do not consider. Yet, some processes such as cloud dynamics and ecosystem functional response still have fairly high uncertainties. In this article, we present an overview of climate feedbacks for Earth system components currently included in state-of-the-art ESMs and discuss the challenges to evaluate and quantify them. Uncertainties in feedback quantification arise from the interdependencies of biogeochemical matter fluxes and physical properties, the spatial and temporal heterogeneity of processes, and the lack of long-term continuous observational data to constrain them. We present an outlook for promising approaches that can help to quantify and to constrain the large number of feedbacks in ESMs in the future. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research (researchers, lecturers, and students). This study updates and significantly expands upon the last comprehensive overview of climate feedbacks in ESMs, which was produced 15 years ago (NRC, 2003).
  •  
25.
  • Heinze, Christoph, et al. (författare)
  • The ocean carbon sink – impacts, vulnerabilities, and challenges
  • 2015
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 6, s. 327-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide (CO 2 ) is, next to water vapour, considered to be the most important natural green- house gas on Earth. Rapidly rising atmospheric CO 2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strate- gies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO 2 concentrations and currently take up about 25 % of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with re- spect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air–sea flux values for natural and anthropogenic CO 2 as well as on increased CO 2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 67
Typ av publikation
tidskriftsartikel (59)
forskningsöversikt (8)
Typ av innehåll
refereegranskat (66)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Donges, Jonathan F. (8)
Smith, Benjamin (6)
Messori, Gabriele (6)
Cornell, Sarah E. (5)
Lindeskog, Mats (5)
Lucht, Wolfgang (5)
visa fler...
Olin, Stefan (5)
Faranda, Davide (4)
Winkelmann, Ricarda (3)
Arneth, Almut (3)
Wang-Erlandsson, Lan (3)
May, Wilhelm (3)
Meier, H. E. Markus (3)
Barfuss, Wolfram (3)
Heitzig, Jobst (3)
Rutgersson, Anna, 19 ... (3)
Kjellström, Erik (3)
Engström, Kerstin (3)
Coumou, Dim (3)
aut (2)
Zorita, E. (2)
Arneth, A. (2)
Di Baldassarre, Giul ... (2)
Omstedt, Anders, 194 ... (2)
Wu, Minchao (2)
Beer, Christian (2)
Pugh, Thomas A M (2)
Lade, Steven J. (2)
Donges, Jonathan (2)
Rockström, Johan (2)
Obura, David (2)
Richardson, Katherin ... (2)
Thonicke, Kirsten (2)
Rocha, Juan, 1984- (2)
Schlüter, Maja (2)
Wiedermann, Marc (2)
Haapala, Jari (2)
Bayer, Anita D. (2)
Keys, Patrick W. (2)
Hagemann, Stefan (2)
Vautard, Robert (2)
Pinto, Joaquim G. (2)
Wu, Lichuan (2)
Kjellström, Erik, 19 ... (2)
Messori, Gabriele, 1 ... (2)
De Luca, Paolo (2)
Jones, Colin (2)
Kolb, Jakob J. (2)
Müller-Hansen, Finn (2)
visa färre...
Lärosäte
Stockholms universitet (40)
Lunds universitet (17)
Uppsala universitet (16)
Göteborgs universitet (8)
Kungliga Tekniska Högskolan (3)
Chalmers tekniska högskola (3)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (67)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (63)
Lantbruksvetenskap (2)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy