SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2198 3844 "

Sökning: L773:2198 3844

  • Resultat 1-25 av 137
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abarkan, Myriam, et al. (författare)
  • Vertical Organic Electrochemical Transistors and Electronics for Low Amplitude Micro-Organ Signals
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrical signals are fundamental to key biological events such as brain activity, heartbeat, or vital hormone secretion. Their capture and analysis provide insight into cell or organ physiology and a number of bioelectronic medical devices aim to improve signal acquisition. Organic electrochemical transistors (OECT) have proven their capacity to capture neuronal and cardiac signals with high fidelity and amplification. Vertical PEDOT:PSS-based OECTs (vOECTs) further enhance signal amplification and device density but have not been characterized in biological applications. An electronic board with individually tuneable transistor biases overcomes fabrication induced heterogeneity in device metrics and allows quantitative biological experiments. Careful exploration of vOECT electric parameters defines voltage biases compatible with reliable transistor function in biological experiments and provides useful maximal transconductance values without influencing cellular signal generation or propagation. This permits successful application in monitoring micro-organs of prime importance in diabetes, the endocrine pancreatic islets, which are known for their far smaller signal amplitudes as compared to neurons or heart cells. Moreover, vOECTs capture their single-cell action potentials and multicellular slow potentials reflecting micro-organ organizations as well as their modulation by the physiological stimulator glucose. This opens the possibility to use OECTs in new biomedical fields well beyond their classical applications.
  •  
2.
  • Abdullaeva, Oliya, et al. (författare)
  • Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • H2O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2O2). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2O2-sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2O2 delivery system, paving the way to ROS-based organic bioelectronics.
  •  
3.
  • Ahmed, Mohammad Shamsuddin, et al. (författare)
  • Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 8:21
  • Forskningsöversikt (refereegranskat)abstract
    • Metal–sulfur batteries (MSBs) provide high specific capacity due to the reversible redox mechanism based on conversion reaction that makes this battery a more promising candidate for next-generation energy storage systems. Recently, along with elemental sulfur (S8), sulfurized polyacrylonitrile (SPAN), in which active sulfur moieties are covalently bounded to carbon backbone, has received significant attention as an electrode material. Importantly, SPAN can serve as a universal cathode with minimized metal–polysulfide dissolution because sulfur is immobilized through covalent bonding at the carbon backbone. Considering these unique structural features, SPAN represents a new approach beyond elemental S8 for MSBs. However, the development of SPAN electrodes is in its infancy stage compared to conventional S8 cathodes because several issues such as chemical structure, attached sulfur chain lengths, and over-capacity in the first cycle remain unresolved. In addition, physical, chemical, or specific treatments are required for tuning intrinsic properties such as sulfur loading, porosity, and conductivity, which have a pivotal role in improving battery performance. This review discusses the fundamental and technological discussions on SPAN synthesis, physicochemical properties, and electrochemical performance in MSBs. Further, the essential guidance will provide research directions on SPAN electrodes for potential and industrial applications of MSBs.
  •  
4.
  • Altay, Özlem, et al. (författare)
  • Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 8:17
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is associated with mitochondrial dysfunction and metabolic abnormalities, including the deficiencies in nicotinamide adenine dinucleotide (NAD+) and glutathione metabolism. Here it is investigated if administration of a mixture of combined metabolic activators (CMAs) consisting of glutathione and NAD+ precursors can restore metabolic function and thus aid the recovery of COVID-19 patients. CMAs include l-serine, N-acetyl-l-cysteine, nicotinamide riboside, and l-carnitine tartrate, salt form of l-carnitine. Placebo-controlled, open-label phase 2 study and double-blinded phase 3 clinical trials are conducted to investigate the time of symptom-free recovery on ambulatory patients using CMAs. The results of both studies show that the time to complete recovery is significantly shorter in the CMA group (6.6 vs 9.3 d) in phase 2 and (5.7 vs 9.2 d) in phase 3 trials compared to placebo group. A comprehensive analysis of the plasma metabolome and proteome reveals major metabolic changes. Plasma levels of proteins and metabolites associated with inflammation and antioxidant metabolism are significantly improved in patients treated with CMAs as compared to placebo. The results show that treating patients infected with COVID-19 with CMAs lead to a more rapid symptom-free recovery, suggesting a role for such a therapeutic regime in the treatment of infections leading to respiratory problems.
  •  
5.
  • Andersson, Olof, 1978-, et al. (författare)
  • Scalable Electronic Ratchet with Over 10% Rectification Efficiency
  • 2020
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic ratchets use a periodic potential with broken inversion symmetry to rectify undirected (electromagnetic, EM) forces and can in principle be a complement to conventional diode-based designs. Unfortunately, ratchet devices reported to date have low or undetermined power conversion efficiencies, hampering applicability. Combining experiments and numerical modeling, field-effect transistor-based ratchets are investigated in which the driving signal is coupled into the accumulation layer via interdigitated finger electrodes that are capacitively coupled to the field effect transistor channel region. The output current-voltage curves of these ratchets can have a fill factor amp;gt;amp;gt; 0.25 which is highly favorable for the power output. Experimentally, a maximum power conversion efficiency well over 10% at 5 MHz, which is the highest reported value for an electronic ratchet, is determined. Device simulations indicate this number can be increased further by increasing the device asymmetry. A scaling analysis shows that the frequency range of optimal performance can be scaled to the THz regime, and possibly beyond, while adhering to technologically realistic parameters. Concomitantly, the power output density increases from approximate to 4 W m(-2) to approximate to 1 MW m(-2). Hence, this type of ratchet device can rectify high-frequency EM fields at reasonable efficiencies, potentially paving the way for actual use as energy harvester.
  •  
6.
  • Bernacka Wojcik, Iwona, et al. (författare)
  • Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.
  •  
7.
  • Bi, Chenghao, et al. (författare)
  • Spontaneous Self-Assembly of Cesium Lead Halide Perovskite Nanoplatelets into Cuboid Crystals with High Intensity Blue Emission
  • 2019
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 6:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Colloidal all-inorganic perovskite nanocrystals have gained significant attention as a promising material for both fundamental and applied research due to their excellent emission properties. However, reported photoluminescence quantum yields (PL QYs) of blue-emitting perovskite nanocrystals are rather low, mostly due to the fact that the high energy excitons for such wide bandgap materials are easily captured by interband traps, and then decay nonradiatively. In this work, it is demonstrated how to tackle this issue, performing self-assembly of 2D perovskite nanoplatelets into larger size (≈50 nm × 50 nm × 20 nm) cuboid crystals. In these structures, 2D nanoplatelets being isolated from each other within the cuboidal scaffold by organic ligands constitute multiple quantum wells, where exciton localization on potential disorder sites helps them to bypass nonradiative channels present in other platelets. As a result, the cuboid crystals show an extremely high PL QY of 91% of the emission band centered at 480 nm. Moreover, using the same synthetic method, mixed-anion CsPb(Br/Cl) 3 cuboid crystals with blue emission peaks ranging from 452 to 470 nm, and still high PL QYs in the range of 72–83% are produced.
  •  
8.
  • Bianchi, Michele, et al. (författare)
  • Poly(3,4‐ethylenedioxythiophene)‐Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications
  • 2022
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 9:12
  • Forskningsöversikt (refereegranskat)abstract
    • Next‐generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio‐temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy‐efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic–abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic‐electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state‐of‐the‐art of poly(3,4‐ethylenedioxythiophene)‐based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready‐for‐clinical‐use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.
  •  
9.
  •  
10.
  •  
11.
  • Böhler, Christian, et al. (författare)
  • Multilayer Arrays for Neurotechnology Applications (MANTA): Chronically Stable Thin-Film Intracortical Implants
  • 2023
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10–60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity. Probes that remain in intimate contact with the signaling tissue over months to years are a game changer for neuroscience and, importantly, open up for broader clinical translation of systems relying on neurotechnology to interface the human brain.
  •  
12.
  • Canton, Sophie E., et al. (författare)
  • Ultrafast Jahn-Teller Photoswitching in Cobalt Single-Ion Magnets
  • 2023
  • Ingår i: Advanced Science. - 2198-3844. ; 10:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.
  •  
13.
  • Caprettini, Valeria, et al. (författare)
  • Enhanced Raman Investigation of Cell Membrane and Intracellular Compounds by 3D Plasmonic Nanoelectrode Arrays
  • 2018
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • 3D nanostructures are widely exploited in cell cultures for many purposes such as controlled drug delivery, transfection, intracellular sampling, and electrical recording. However, little is known about the interaction of the cells with these substrates, and even less about the effects of electroporation on the cellular membrane and the nuclear envelope. This work exploits 3D plasmonic nanoelectrodes to study, by surface-enhanced Raman scattering (SERS), the cell membrane dynamics on the nanostructured substrate before, during, and after electroporation. In vitro cultured cells tightly adhere on 3D plasmonic nanoelectrodes precisely in the plasmonic hot spots, making this kind of investigation possible. After electroporation, the cell membrane dynamics are studied by recording the Raman time traces of biomolecules in contact or next to the 3D plasmonic nanoelectrode. During this process, the 3D plasmonic nanoelectrodes are intracellularly coupled, thus enabling the monitoring of different molecular species, including lipids, proteins, and nucleic acids. Scanning electron microscopy cross-section analysis evidences the possibility of nuclear membrane poration compatible with the reported Raman spectra. These findings may open a new route toward controlled intracellular sampling and intranuclear delivery of genic materials. They also show the possibility of nuclear envelope disruption which may lead to negative side effects.
  •  
14.
  • Cen, Xiaohong, et al. (författare)
  • TLR1/2 Specific Small-Molecule Agonist Suppresses Leukemia Cancer Cell Growth by Stimulating Cytotoxic T Lymphocytes
  • 2019
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 6:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Toll-like receptor 2 (TLR2) expressed on antigen presenting cells evokes a series of critical cytokines, which favor the development of tumor-specific cytotoxic T lymphocytes (CTLs). Therefore, TLR2 represents an attractive cancer immunotherapeutic target. Here, a synthetic library of 14 000 compounds together with a series of newly developed compounds for NF-κB activation using HEK-Blue hTLR2 cells is initially screened. Following further screening in a variety of cells including HEK-Blue hTLRs reporter cells, murine, and human macrophage cell lines, a potent small molecule agonist 23 (SMU-Z1) is identified, which specifically activates TLR2 through its association with TLR1, with a EC50 of 4.88 ± 0.79 × 10-9 m. Toxicology studies, proinflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, and nitric oxide) and target-protein based biophysical assays demonstrate the pharmacologically relevant characteristics of SMU-Z1. In addition, SMU-Z1 promotes murine splenocyte proliferation and upregulates the expression of CD8+ T cells, NK cells and DCs, which results in a significant antitumor effect in a murine leukemia model. Finally, the induced tumors in three out of seven mice disappear after administration of SMU-Z1. Our studies thus identify a novel and potent TLR1/2 small molecule agonist, which displays promising immune adjuvant properties and antitumor immunity.
  •  
15.
  • Chaudhary, Richa, 1988, et al. (författare)
  • Structural Positive Electrodes Engineered for Multifunctionality
  • 2024
  • Ingår i: Advanced Science. - 2198-3844 .- 2198-3844. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional structural batteries are of high and emerging interest in a wide variety of high-strength and lightweight applications. Structural batteries typically use pristine carbon fiber as the negative electrode, functionalized carbon fiber as the positive electrode, and a mechanically robust lithium-ion transporting electrolyte. However, electrochemical cycling of carbon fibre-based positive electrodes is still limited to tests in liquid electrolytes, which does not allow for to introduction of multifunctionality in real terms. To overcome these limitations, structural batteries with a structural battery electrolyte (SBE) are developed. This approach offers massless energy storage. The electrodes are manufactured using economically friendly, abundant, cheap, and non-toxic iron-based materials like olivine LiFePO4. Reduced graphene oxide, renowned for its high surface area and electrical conductivity, is incorporated to enhance the ion transport mechanism. Furthermore, a vacuum-infused solid-liquid electrolyte is cured to bolster the mechanical strength of the carbon fibers and provide a medium for lithium-ion migration. Electrophoretic deposition is selected as a green process to manufacture the structural positive electrodes with homogeneous mass loading. A specific capacity of 112 mAh g−1 can be reached at C/20, allowing the smooth transport of Li-ion in the presence of SBE. The modulus of positive electrodes exceeded 80 GPa. Structural battery-positive half-cells are demonstrated across various mass-loadings, enabling them to be tailored for a diverse array of applications in consumer technology, electric vehicles, and aerospace sectors.
  •  
16.
  • Chen, Shiqian, et al. (författare)
  • Ultrafast metal-free microsupercapacitor arrays directly store instantaneous high-voltage electricity from mechanical energy harvesters
  • 2024
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 11:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Harvesting renewable mechanical energy is envisioned as a promising and sustainable way for power generation. Many recent mechanical energy harvesters are able to produce instantaneous (pulsed) electricity with a high peak voltage of over 100 V. However, directly storing such irregular high-voltage pulse electricity remains a great challenge. The use of extra power management components can boost storage efficiency but increase system complexity. Here utilizing the conducting polymer PEDOT:PSS, high-rate metal-free micro-supercapacitor (MSC) arrays are successfully fabricated for direct high-efficiency storage of high-voltage pulse electricity. Within an area of 2.4 × 3.4 cm2 on various paper substrates, large-scale MSC arrays (comprising up to 100 cells) can be printed to deliver a working voltage window of 160 V at an ultrahigh scan rate up to 30 V s−1. The ultrahigh rate capability enables the MSC arrays to quickly capture and efficiently store the high-voltage (≈150 V) pulse electricity produced by a droplet-based electricity generator at a high efficiency of 62%, significantly higher than that (<2%) of the batteries or capacitors demonstrated in the literature. Moreover, the compact and metal-free features make these MSC arrays excellent candidates for sustainable high-performance energy storage in self-charging power systems.
  •  
17.
  • Chong, Hui, et al. (författare)
  • Organo-ptii complexes for potent photodynamic inactivation of multi-drug resistant bacteria and the influence of configuration
  • 2024
  • Ingår i: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 11:14
  • Tidskriftsartikel (refereegranskat)abstract
    • PtII based organometallic photosensitizers (PSs) have emerged as novel potent photodynamic inactivation (PDI) reagents through their enhanced intersystem crossing (ISC) processes. Currently, few PtII PSs have been investigated as antibacterial materials, with relatively poor performances reported and with structure-activity relationships not well described. Herein, a pair of configurational isomers are reported of Bis-BODIPY (4,4-difluoro-boradizaindacene) embedded PtII PSs. The cis-isomer (cis-BBP) displayed enhanced 1O2 generation and better bacterial membrane anchoring capability as compared to the trans-isomer (trans-BBP). The effective PDI concentrations (efficiency > 99.9%) for cis-BBP in Acinetobacter baumannii (multi-drug resistant (MDR)) and Staphylococcus aureus are 400 nM (12 J cm−2) and 100 nM (18 J cm−2), respectively; corresponding concentrations and light doses for trans-BBP in the two bacteria are 2.50 µM (30 J cm−2) and 1.50 µM (18 J cm−2), respectively. The 50% and 90% minimum inhibitory concentration (MIC50 and MIC90) ratio of trans-BBP to cis-BBP is 22.22 and 24.02 in A. baumannii (MDR); 21.29 and 22.36 in methicillin resistant S. aureus (MRSA), respectively. Furthermore, cis-BBP displays superior in vivo antibacterial performance, with acceptable dark and photoinduced cytotoxicity. These results demonstrate cis-BBP is a robust light-assisted antibacterial reagent at sub-micromolecular concentrations. More importantly, configuration of PtII PSs should be an important issue to be considered in further PDI reagents design.
  •  
18.
  • Dejea, Hector, et al. (författare)
  • In Situ Loading and Time-Resolved Synchrotron-Based Phase Contrast Tomography for the Mechanical Investigation of Connective Knee Tissues : A Proof-of-Concept Study
  • Ingår i: Advanced Science. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage and meniscus transfer and distribute mechanical loads in the knee joint. Degeneration of these connective tissues occurs during the progression of knee osteoarthritis, which affects their composition, microstructure, and mechanical properties. A deeper understanding of disease progression can be obtained by studying them simultaneously. Time-resolved synchrotron-based X-ray phase-contrast tomography (SR-PhC-µCT) allows to capture the tissue dynamics. This proof-of-concept study presents a rheometer setup for simultaneous in situ unconfined compression and SR-PhC-µCT of connective knee tissues. The microstructural response of bovine cartilage (n = 16) and meniscus (n = 4) samples under axial continuously increased strain, or two steps of 15% strain (stress–relaxation) is studied. The chondrocyte distribution in cartilage and the collagen fiber orientation in the meniscus are assessed. Variations in chondrocyte density reveal an increase in the top 40% of the sample during loading, compared to the lower half. Meniscus collagen fibers reorient perpendicular to the loading direction during compression and partially redisperse during relaxation. Radiation damage, image repeatability, and image quality assessments show little to no effects on the results. In conclusion, this approach is highly promising for future studies of human knee tissues to understand their microstructure, mechanical response, and progression in degenerative diseases.
  •  
19.
  • Du, Jian, et al. (författare)
  • Iron-Salen Complex and Co2+ Ion-Derived Cobalt-Iron Hydroxide/Carbon Nanohybrid as an Efficient Oxygen Evolution Electrocatalyst
  • 2019
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 6:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-salen complexes are widely used as catalysts in numerous fundamental organic transformation reactions. Here, CoFe hydroxide/carbon nanohybrid is reported as an efficient oxygen evolution electrocatalyst derived from the in situ formed molecular Fe-salen complexes and Co2+ ions at a low temperature of 160 degrees C. It has been evidenced that Fe-salen as a molecular precursor facilitates the confined-growth of metal hydroxides, while Co2+ plays a critical role in catalyzing the transformation of organic ligand into nanocarbons and constitutes an essential component for CoFe hydroxide. The resulting Co1.2Fe/C hybrid material requires an overpotential of 260 mV at a current density of 10 mA cm(-2) with high durability. The high activity is contributed to uniform distribution of CoFe hydroxides on carbon layer and excellent electron conductivity caused by intimate contact between metal and nanocarbon. Given the diversity of molecular precursors, these results represent a promising approach to high-performance carbon-based water splitting catalysts.
  •  
20.
  •  
21.
  • Enrico, Alessandro, et al. (författare)
  • Cleanroom-Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors
  • 2024
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 mu m) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research. Ultrafast focused femtosecond laser has been introduced for the direct micropatterning of organic electrochemical transistors (OECTs), providing high resolution (2 mu m), selective cleanroom-free patterning of insulating and conjugated polymer layers while preserving device operation, and high flexibility in device design. The approach has been validated in the fabrication of complementary inverters and glucose biosensors.image
  •  
22.
  • Finegan, Donal P, et al. (författare)
  • Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High-Speed Operando Tomography and Digital Volume Correlation
  • 2015
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high-speed operando synchrotron X-ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real-time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral-wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time-lapse X-ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs.
  •  
23.
  • Galle, Marco H.J.J., et al. (författare)
  • Self-Healing Ability of Perovskites Observed via Photoluminescence Response on Nanoscale Local Forces and Mechanical Damage
  • 2023
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The photoluminescence (PL) of metal halide perovskites can recover after light or current-induced degradation. This self-healing ability is tested by acting mechanically on MAPbI3 polycrystalline microcrystals by an atomic force microscope tip (applying force, scratching, and cutting) while monitoring the PL. Although strain and crystal damage induce strong PL quenching, the initial balance between radiative and nonradiative processes in the microcrystals is restored within a few minutes. The stepwise quenching–recovery cycles induced by the mechanical action is interpreted as a modulation of the PL blinking behavior. This study proposes that the dynamic equilibrium between active and inactive states of the metastable nonradiative recombination centers causing blinking is perturbed by strain. Reversible stochastic transformation of several nonradiative centers per microcrystal under application/release of the local stress can lead to the observed PL quenching and recovery. Fitting the experimental PL trajectories by a phenomenological model based on viscoelasticity provides a characteristic time of strain relaxation in MAPbI3 on the order of 10–100 s. The key role of metastable defect states in nonradiative losses and in the self-healing properties of perovskites is suggested.
  •  
24.
  •  
25.
  • Gerasimov, Jennifer, et al. (författare)
  • A Biologically Interfaced Evolvable Organic Pattern Classifier
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Future brain-computer interfaces will require local and highly individualized signal processing of fully integrated electronic circuits within the nervous system and other living tissue. New devices will need to be developed that can receive data from a sensor array, process these data into meaningful information, and translate that information into a format that can be interpreted by living systems. Here, the first example of interfacing a hardware-based pattern classifier with a biological nerve is reported. The classifier implements the Widrow-Hoff learning algorithm on an array of evolvable organic electrochemical transistors (EOECTs). The EOECTs channel conductance is modulated in situ by electropolymerizing the semiconductor material within the channel, allowing for low voltage operation, high reproducibility, and an improvement in state retention by two orders of magnitude over state-of-the-art OECT devices. The organic classifier is interfaced with a biological nerve using an organic electrochemical spiking neuron to translate the classifiers output to a simulated action potential. The latter is then used to stimulate muscle contraction selectively based on the input pattern, thus paving the way for the development of adaptive neural interfaces for closed-loop therapeutic systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 137
Typ av publikation
tidskriftsartikel (130)
forskningsöversikt (7)
Typ av innehåll
refereegranskat (136)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Berggren, Magnus (8)
Stavrinidou, Eleni (5)
Zheng, Kaibo (4)
Crispin, Xavier (4)
Müller, Christian, 1 ... (4)
Fahlman, Mats (3)
visa fler...
Donahue, Mary (3)
Fabiano, Simone (3)
Gladisch, Johannes (3)
Simon, Daniel (3)
Liu, Xianjie (3)
Zhao, Dan (3)
Boschloo, Gerrit (3)
Zhang, L. (2)
Mardinoglu, Adil (2)
Nielsen, Jens B, 196 ... (2)
Uhlén, Mathias (2)
Arif, Muhammad (2)
Zhang, Cheng (2)
Granberg, Hjalmar (2)
Kere, J (2)
Silverå Ejneby, Mali ... (2)
Zozoulenko, Igor (2)
Lauschke, VM (2)
Wang, W. (2)
Zhang, Yu (2)
Tybrandt, Klas (2)
Olsson, A (2)
Greco, D (2)
Alenius, H (2)
Kahnt, Maik (2)
Vomiero, Alberto (2)
Borén, Jan, 1963 (2)
Parmar, Malin (2)
Isaksson, Hanna (2)
Xiong, Shizhao, 1985 (2)
Hwang, Jang Yeon (2)
Sun, Yang Kook (2)
Jin, Lei (2)
Benetti, Daniele (2)
AlOtaibi, Bandar (2)
Zhao, Haiguang (2)
Mi, Zetian (2)
Rosei, Frederico (2)
Forchheimer, Robert (2)
Lundqvist, D (2)
Rosén, Johanna (2)
Kim, Jaekook (2)
Skoog, T (2)
Buyanova, Irina A, 1 ... (2)
visa färre...
Lärosäte
Karolinska Institutet (32)
Linköpings universitet (30)
Chalmers tekniska högskola (23)
Lunds universitet (22)
Kungliga Tekniska Högskolan (15)
Stockholms universitet (13)
visa fler...
Uppsala universitet (11)
Göteborgs universitet (8)
Luleå tekniska universitet (8)
Umeå universitet (7)
RISE (6)
Malmö universitet (2)
Högskolan i Halmstad (1)
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (137)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (64)
Teknik (56)
Medicin och hälsovetenskap (26)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy