SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2296 7745 "

Sökning: L773:2296 7745

  • Resultat 1-25 av 263
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agha Karimi, Armin, et al. (författare)
  • Barystatic and steric sea level variations in the Baltic Sea and implications of water exchange with the North Sea in the satellite era
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite altimetry, satellite gravimetry, and in-situ subsurface salinity and temperature profiles are used to investigate the total, barystatic, and steric sea level variations in the Baltic Sea, respectively. To estimate the steric sea level, the density variations are weighted in deeper layers to prevent overestimation of their contribution. We show that the sum of barystatic and steric components exhibits excellent cross correlation (0.9) with satellite altimetry sea level variations and also explains up to 84% of total signal variability from 2002 to 2019. Considering the dominance of barystatic sea level variations in the basin and the limitation of satellite gravimetry in resolving the mass change in water-land transition zones (known as the leakage problem), the mismatch is likely attributed to the inadequate accuracy of the barystatic datasets. The total sea level and its contributors are further decomposed into seasonal, interannual, and decadal temporal components. It is shown that despite its insignificant contributions to seasonal and interannual changes, the steric sea level plays an important role in decadal variations. Additionally, we show that the interannual variations of the barystatic sea level are governed by the North Atlantic Oscillation in the basin. The sea level variation in the North Sea is also examined to deduce the water exchange patterns on different time scales. A drop in the North Sea level can be seen from 2005 to 2011 which is followed by the Baltic Sea level with a ~3-year lag, implying the outflow from the Baltic Sea to the North Sea.
  •  
2.
  • Agha Karimi, Armin, et al. (författare)
  • Multidecadal sea level variability in the Baltic sea and its impact on acceleration estimations
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Multidecadal sea level variation in the Baltic Sea is investigated from 1900 to 2020 deploying satellite and in situ datasets. As a part of this investigation, nearly 30 years of satellite altimetry data are used to compare with tide gauge data in terms of linear trend. This, in turn, leads to validation of the regional uplift model developed for the Fennoscandia. The role of North Atlantic Oscillation (NAO) in multidecadal variations of the Baltic Sea is also analyzed. Although NAO impacts the Baltic Sea level on seasonal to decadal time scales according to previous studies, it is not a pronounced factor in the multidecadal variations. The acceleration in the sea level rise of the basin is reported as statistically insignificant in recent studies or even decelerating in an investigation of the early 1990s. It is shown that the reason for these results relates to the global warming hiatus in the 1950s−1970s, which can be seen in all eight tide gauges used for this study. To account for the slowdown period, the acceleration in the basin is investigated by fitting linear trends to time spans of six to seven decades, which include the hiatus. These results imply that the sea level rise is accelerated in the Baltic Sea during the period 1900–2020.
  •  
3.
  • Alvarez, Belinda, et al. (författare)
  • Assessing the potential of sponges (Porifera) as indicators of ocean dissolved Si concentrations
  • 2017
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore the distribution of sponges along dissolved silica (dSi) concentration gradients to test whether sponge assemblages are related to dSi and to assess the validity of fossil sponges as a palaeoecological tool for inferring dSi concentrations of the past oceans. We extracted sponge records from the publically available Global Biodiversity Information Facility (GBIF) database and linked these records with ocean physiochemical data to evaluate if there is any correspondence between dSi concentrations of the waters sponges inhabit and their distribution. Over 320,000 records of Porifera were available, of which 62,360 met strict quality control criteria. Our analyses was limited to the taxonomic levels of family, order and class. Because dSi concentration is correlated with depth in the modern ocean, we also explored sponge taxa distributions as a function of depth. We observe that while some sponge taxa appear to have dSi preferences (e.g., class Hexactinellida occurs mostly at high dSi), the overall distribution of sponge orders and families along dSi gradients is not sufficiently differentiated to unambiguously relate dSi concentrations to sponge taxa assemblages. We also observe that sponge taxa tend to be similarly distributed along a depth gradient. In other words, both dSi and/or another variable that depth is a surrogate for, may play a role in controlling sponge spatial distribution and the challenge is to distinguish between the two. We conclude that inferences about palaeo-dSi concentrations drawn from the abundance of sponges in the stratigraphic records must be treated cautiously as these animals are adapted to a great range of dSi conditions and likely other underlying variables that are related to depth. Our analysis provides a quantification of the dSi ranges of common sponge taxa, expands on previous knowledge related to their bathymetry preferences and suggest that sponge taxa assemblages are not related to particular dSi conditions.
  •  
4.
  • Andersson, Agneta, et al. (författare)
  • Microbial food web changes induced by terrestrial organic matter and elevated temperature in the coastal northern Baltic Sea
  • 2023
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change has been projected to cause increased temperature and amplified inflows of terrestrial organic matter to coastal areas in northern Europe. Consequently, changes at the base of the food web favoring heterotrophic bacteria over phytoplankton are expected, affecting the food web structure. We tested this hypothesis using an outdoor shallow mesocosm system in the northern Baltic Sea in early summer, where the effects of increased temperature (+ 3°C) and terrestrial matter inputs were studied following the system dynamics and conducting grazing experiments. Juvenile perch constituted the highest trophic level in the system, which exerted strong predation on the zooplankton community. Perch subsequently released the microbial food web from heavy grazing by mesozooplankton. Addition of terrestrial matter had a stronger effect on the microbial food web than the temperature increase, because terrestrial organic matter and accompanying nutrients promoted both heterotrophic bacterial production and phytoplankton primary production. Moreover, due to the shallow water column in the experiment, terrestrial matter addition did not reduce the light below the photosynthesis saturation level, and in these conditions, the net-autotrophy was strengthened by terrestrial matter enrichment. In combination with elevated temperature, the terrestrial matter addition effects were intensified, further shifting the size distribution of the microbial food web base from picoplankton to microphytoplankton. These changes up the food web led to increase in the biomass and proportion of large-sized ciliates (>60 µm) and rotifers. Despite the shifts in the microbial food web size structure, grazing experiments suggested that the pathway from picoplankton to nano- and microzooplankton constituted the major energy flow in all treatments. The study implies that the microbial food web compartments in shallow coastal waters will adjust to climate induced increased inputs of terrestrial matter and elevated temperature, and that the major energy path will flow from picoplankton to large-sized ciliates during the summer period. 
  •  
5.
  • Andersson, Leif, et al. (författare)
  • Ecological adaptation in cod and herring and possible consequences of future climate change in the Baltic Sea
  • 2023
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • The Atlantic herring and Atlantic cod are two marine fish species that have successfully adapted to the brackish Baltic Sea, and the former is able to spawn in near-freshwater conditions in the inner Gulf of Bothnia. Here, we review the state of current knowledge concerning ecological adaptation in the two species and make an attempt to predict how they will be able to cope with future climate change. Previous whole genome sequencing studies in Atlantic herring have revealed hundreds of genetic loci underlying ecological adaptation, including several loci that show very strong associations to variation in salinity and temperature. These results suggest the existence of standing genetic variation available for adaptation to a changing environment. However, although Atlantic herring probably has the genetic potential to adapt, its future status also depends on how climate change will affect plankton production and competing species, such as sprat and three-spined stickleback. In cod, the situation is challenging, as there is only one true Baltic population, spawning east of Bornholm and then dispersing towards the east and north. This Baltic cod population is threatened by overfishing, low oxygen levels in benthic waters and generally bad physiological condition of individual fish, in addition to being completely isolated from gene flow from nearby cod populations at the entrance of the Baltic Sea.
  •  
6.
  • Angove, Charlotte, et al. (författare)
  • The Fight to Capture Light : Functional Diversity Is Related to Aquatic Plant Community Productivity Likely by Enhancing Light Capture
  • 2020
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional diversity (FD) experiments are highly effective for investigating how a community interacts with its environment. However, such experiments using morphological and chemical traits have not been conducted for submerged aquatic plants and their insights would be highly valuable for understanding the ecology of these communities. We conducted a 15-week field experiment in the Baltic Sea where we manipulated the species composition of aquatic plant communities to investigate functional diversity. We constructed artificial triculture communities with different species compositions to change the Community Weighted Means (CWMs) and variability of traits. We measured nine plant traits and tested how community productivity (CP) was related to FD, trait CWMs and community trait ranges. CP varied by more than four times across treatments and functional richness was significantly related to CP. Functional evenness and functional divergence were not significantly related to CR Height, leaf area and delta C-13 were significantly related to CP. Leaf delta C-13 trends with CP suggested that the carbon supply is not replete, yet species composition was partly responsible for the relationship. Plant height likely had multifaceted benefits to CP because there was evidence of a competitive height interaction between the tallest and 2 nd tallest species, therefore the effects of plant height to CP would have been disproportionally large. The height of the tallest species significantly drove the variability of the community height range, which was significantly related to CP and it had a relatively large influence on the calculation of FD indices. Leaf area, which was strongly correlated to plant height, was also significantly related to CR The significant relationship between functional richness and CP was most likely driven by the presence of taller plants. FD likely enhanced CP, by selecting for extreme trait values which enhanced production (selection effect), while niche complementarity effects were not observed. This study provides experimental evidence and mechanistic insights into the role of FD and specific traits for CP in submerged aquatic plant communities. To conclude, FD was significantly related to CP of temperate aquatic plant communities likely by selecting for traits which enhanced light capture, with consequences for carbon supply.
  •  
7.
  • Asplund, Maria. E., 1970, et al. (författare)
  • Methane Emissions From Nordic Seagrass Meadow Sediments
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Shallow coastal soft bottoms are important carbon sinks. Submerged vegetation has been shown to sequester carbon, increase sedimentary organic carbon (C-org) and thus suppress greenhouse gas (GHG) emissions. The ongoing regression of seagrass cover in many areas of the world can therefore lead to accelerated emission of GHGs. In Nordic waters, seagrass meadows have a high capacity for carbon storage, with some areas being recognized as blue carbon hotspots. To what extent these carbon stocks lead to emission of methane (CH4) is not yet known. We investigated benthic CH4 emission (i.e., net release from the sediment) in relation to seagrass (i.e. Zostera marina) cover and sedimentary C-org content (%) during the warm summer period (when emissions are likely to be highest). Methane exchange was measured in situ with benthic chambers at nine sites distributed in three regions along a salinity gradient from similar to 6 in the Baltic Sea (Finland) to similar to 20 in Kattegat (Denmark) and similar to 26 in Skagerrak (Sweden). The net release of CH4 from seagrass sediments and adjacent unvegetated areas was generally low compared to other coastal habitats in the region (such as mussel banks and wetlands) and to other seagrass areas worldwide. The lowest net release was found in Finland. We found a positive relationship between CH4 net release and sedimentary C-org content in both seagrass meadows and unvegetated areas, whereas no clear relationship between seagrass cover and CH4 net release was observed. Overall, the data suggest that Nordic Zostera marina meadows release average levels of CH4 ranging from 0.3 to 3.0 mu g CH4 m(-2) h(-1), which is at least 12-78 times lower (CO2 equivalents) than their carbon accumulation rates previously estimated from seagrass meadows in the region, thereby not hampering their role as carbon sinks. Thus, the relatively weak CH4 emissions from Nordic Z. marina meadows will not outweigh their importance as carbon sinks under present environmental conditions.
  •  
8.
  • Bach, Lydia L., et al. (författare)
  • In situ Response of Tropical Coralline Algae to a Novel Thermal Regime
  • 2017
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Coralline algae provide important ecosystem services. In situ observations of how they respond to different environmental conditions can help us to understand (i) their ability to adapt to their local environment and (0 their capacity to acclimatize to a novel thermal regime. Here, individuals of the tropical coralline algae, Lithophyllum kotschyanum, were translocated on a coral reef from thermally stable areas to areas characterized by natural temperature variability. Changes in their photosynthetic efficiency were determined using pulse amplitude modulation (PAM) chlorophyll fluorescence. Despite an initial stress response, algae exposed to increases in thermal variation recovered within 24 hours, indicating a rapid, short-term acclimatization capacity. Algae naturally inhabiting thermally variable areas of the reef showed no change in photosynthetic efficiency throughout the study suggesting longer-term adaptation to living in a variable environment also occurs. However, coralline algae living in thermally stable reef areas were abundant and marginally larger, suggesting physiological trade-offs are used to survive in variable environments. Thus, our results suggest that while coralline algae can survive in environmentally variable conditions, there may be structural and ecosystem costs.
  •  
9.
  • Ballesteros, Ainara, et al. (författare)
  • Cnidome and Morphological Features of Pelagia noctiluca (Cnidaria : Scyphozoa) Throughout the Different Life Cycle Stages
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Pelagia noctiluca is considered the most important jellyfish in the Mediterranean Sea, due to its abundance and the severity of its stings. Despite its importance in marine ecosystems and the health problems caused by its massive arrival in coastal areas, little is known about its early life stages and its cnidome has never been described. This study of the morphological and anatomical features throughout the life cycle identifies four early stages: two ephyra and two metaephyra stages. Ephyra stage 1, newly developed from a planula, has no velar canals, gastric filaments or nematocyst batteries. Ephyra stage 2, has velar canals, a cruciform-shaped manubrium and gastric filaments. Metaephyra stage 3 has eight tentacle buds and nematocyst clusters for the first time. Lastly, in metaephyra stage 4, the eight primary tentacles grow nearly simultaneously, with no secondary tentacles. Complete nematocyst battery patterns gradually develop throughout the later life stages. Four nematocyst types are identified: a-isorhiza, A-isorhiza, O-isorhiza and eurytele. Of these, a-isorhiza and eurytele are the most important throughout the entire life cycle, while A-isorhiza and O-isorhiza have a more important role in advanced stages. All nematocysts show a positive correlation between increasing capsule volumes and increasing body diameter of the ephyrae, metaephyrae, young medusae and adult medusae. In the early stages, the volumes of euryteles in the gastric filaments are larger than those in the exumbrella, indicating that the capsule volume is critical in the absence of marginal tentacles, specialized for feeding. This study provides updated information, the most extensive description to date, including high-resolution photographs and schematic drawings of all the developmental stages in the life cycle of P. noctiluca. Additionally, the first cnidome characterization is provided for each stage to facilitate accurate identification of this species when collected in the water column, and to raise awareness of the potential for human envenomation.
  •  
10.
  • Bartolino, Valerio (författare)
  • Ten lessons on the resilience of the EU common fisheries policy towards climate change and fuel efficiency - A call for adaptive, flexible and well-informed fisheries management
  • 2022
  • Ingår i: Frontiers in marine science. - : Frontiers Media SA. - 2296-7745. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • To effectively future-proof the management of the European Union fishing fleets we have explored a suite of case studies encompassing the northeast and tropical Atlantic, the Mediterranean, Baltic and Black Seas. This study shows that European Union (EU) fisheries are likely resilient to climate-driven short-term stresses, but may be negatively impacted by long-term trends in climate change. However, fisheries' long-term stock resilience can be improved (and therefore be more resilient to increasing changes in climate) by adopting robust and adaptive fisheries management, provided such measures are based on sound scientific advice which includes uncertainty. Such management requires regular updates of biological reference points. Such updates will delineate safe biological limits for exploitation, providing both high long-term yields with reduced risk of stock collapse when affected by short-term stresses, and enhanced compliance with advice to avoid higher than intended fishing mortality. However, high resilience of the exploited ecosystem does not necessarily lead to the resilience of the economy of EU fisheries from suffering shocks associated with reduced yields, neither to a reduced carbon footprint if fuel use increases from lower stock abundances. Fuel consumption is impacted by stock development, but also by changes in vessel and gear technologies, as well as fishing techniques. In this respect, energy-efficient fishing technologies already exist within the EU, though implementing them would require improving the uptake of innovations and demonstrating to stakeholders the potential for both reduced fuel costs and increased catch rates. A transition towards reducing fuel consumption and costs would need to be supported by the setup of EU regulatory instruments. Overall, to effectively manage EU fisheries within a changing climate, flexible, adaptive, well-informed and well-enforced management is needed, with incentives provided for innovations and ocean literacy to cope with the changing conditions, while also reducing the dependency of the capture fishing industry on fossil fuels. To support such management, we provide 10 lessons to characterize 'win-win' fishing strategies for the European Union, which develop leverages in which fishing effort deployed corresponds to Maximum Sustainable Yield targets and Common Fisheries Policy minimal effects objectives. In these strategies, higher catch is obtained in the long run, less fuel is spent to attain the catch, and the fisheries have a higher resistance and resilience to shock and long-term factors to face climate-induced stresses.
  •  
11.
  • Bastardie, Francois, et al. (författare)
  • Reducing the Fuel Use Intensity of Fisheries : Through Efficient Fishing Techniques and Recovered Fish Stocks
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the drivers of greenhouse gas emissions in food production systems is becoming urgent. For wild capture fisheries, fuel use during the fishing phase generally dominates emissions and is highly variable between fisheries. Fuel use is also essential for the economy of the fisheries, but fuel-intensive fisheries can still be profitable due to fuel subsidies, in particular, if the target species is of high value. Developing an innovative bottom-up approach based on detailed catch and spatial fishing effort data, in the absence of direct fuel data, we analysed the fuel use intensity (fuel use per kg landed) and economic efficiency (landing value per litre fuel used) of Danish capture fisheries for the period 2005-2019. An overall decline in fishing effort did not significantly affect the overall fuel use intensity and efficiency, which was stable for most of the fleet segments and marine species. Robust differences in fuel use intensity among individual fisheries, reflected differential spatial accessibility and vulnerability of target species to fishing. In addition, different fishing techniques targeting the same set of species showed differences in fuel use per unit landed. Danish seining and gillnets had a lower fuel use intensity and higher economic efficiency than demersal trawling; and purse seining than pelagic trawling. The variability between stocks and fleets also indicates that there is generally potential for improvement in overall efficiency from improved stock status. Short-term management actions to promote the best available fuel-efficient fishing techniques combined with additional long-term actions to secure the recovery of stocks have the potential to reduce fishery greenhouse gas emissions. Sustainable fisheries and normative environmental management are crucial to developing incentives towards reducing fuel use whenever the fishing sector industry and science work jointly at implementing solutions, as incentives for the industry to reduce fuel use are limited as long as the fishing activity is profitable. Copyright © 2022 Bastardie, Hornborg, Ziegler, Gislason and Eigaard.
  •  
12.
  • Bathmann, Ulrich, et al. (författare)
  • Editorial : Living Along Gradients: Past, Present, Future
  • 2020
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The Baltic Sea is a geologically and evolutionarily young part of the coastal ocean that experienced, in its past, several severe environmental changes. In its present state, the Baltic Sea is characterized by both horizontal and vertical gradients of environmental conditions. As a huge estuary, it shows a west to east/south to north surface salinity gradient from 24 in Kattegat to nearly freshwater in the Bothnian Bay. The vertical salinity and oxygen gradients result in stratification which causes hypoxic and sulfidic anoxic conditions in deep basins. These gradient systems are impacted by natural and anthropogenic changes due to physico-chemical driving forces, varying over time and space. Gradient environments produce an imprint on both the structure and function of the biological systems and influence biogeochemical cycling. Besides, coastal seas in general and the Baltic Sea in particular, experience constant and direct influence from land with consequences to matter and energy cycles, biogeochemical interactions, energy fluxes, and sediment dynamics. “Living along gradients: past, present, future” in the Baltic are today’s very important aspects that rise questions like which of the effects we are detecting occur naturally, and which are driven by human activities. Deciphering past environmental changes and their causes provide keys to understand and simulate possible future scenarios, all of which should rise societal awareness and implementation of appropriate marine and coastal policies. Present-day knowledge on the dynamics of gradient systems, on the processes that affect the coastal sea environment, the results of interaction between coastal seas and society, the detection or reconstruction of past and present changes on time scales from inter-annual to millennial, and future change models are summarized here, with the idea to stimulate scientific exchange on most complex questions, addressing them from different perspectives.
  •  
13.
  • Beauchard, Olivier, et al. (författare)
  • Trawling-induced change in benthic effect trait composition – A multiple case study
  • 2023
  • Ingår i: Frontiers in Marine Science. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The importance of the response-effect trait dichotomy in marine benthic ecology has garnered recent attention. Response traits, characterising species responses to environmental variations, have been a dominant focus in the development of ecological indicators for ecosystem health assessment. In contrast, effect traits, expressing effects of organism activities on the ecosystem, still do not benefit from an equal interest in spite of the complementary facet that they provide to complete our understanding of functional diversity and ecosystem vulnerability. In this study, we explore the consequences of disturbance by bottom trawl fisheries on benthic effect trait composition.Methods: To this end, we used different contexts of environmental and trawling conditions from thirteen case studies in European waters and apply the same analytical procedure to derive a gradient that solely account for trawling-induced disturbance (Partial RLQ analysis).Results: Bottom trawling was found to be a selective force of benthic effect trait composition in a majority of case studies. In general, tube-dwelling species were more typical of low trawling frequencies, whereas deep burrowing species were more resistant at high trawling frequencies. Although we report significantly deleterious effects of trawling on benthic ecosystem functions, the effect trait pattern along the gradient was never related to life span, a key response trait generally assumed to express recoverability following disturbance. Furthermore, we show that trends in species multi-functionality and community functional diversity can be negative or positive along the trawling intensity gradient.Discussion: We discuss the relevance of these results in light of recent developments in the framework of response and effect trait dichotomy, and provide guidelines of trait data analysis in the context of trawl fisheries impact on the sea floor. Our findings emphasize the importance of fundamental concepts from functional ecology in this context and represent a first step toward an assessment of trawling effect more oriented on benthos-mediated biogeochemical processes.
  •  
14.
  • Bednarsek, N., et al. (författare)
  • Synthesis of Thresholds of Ocean Acidification Impacts on Echinoderms
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing the vulnerability of marine invertebrates to ocean acidification (OA) requires an understanding of critical thresholds at which developmental, physiological, and behavioral traits are affected. To identify relevant thresholds for echinoderms, we undertook a three-step data synthesis, focused on California Current Ecosystem (CCE) species. First, literature characterizing echinoderm responses to OA was compiled, creating a dataset comprised of >12,000 datapoints from 41 studies. Analysis of this data set demonstrated responses related to physiology, behavior, growth and development, and increased mortality in the larval and adult stages to low pH exposure. Second, statistical analyses were conducted on selected pathways to identify OA thresholds specific to duration, taxa, and depth-related life stage. Exposure to reduced pH led to impaired responses across a range of physiology, behavior, growth and development, and mortality endpoints for both larval and adult stages. Third, through discussions and synthesis, the expert panel identified a set of eight duration-dependent, life stage, and habitat-dependent pH thresholds and assigned each a confidence score based on quantity and agreement of evidence. The thresholds for these effects ranged within pH from 7.20 to 7.74 and duration from 7 to 30 days, all of which were characterized with either medium or low confidence. These thresholds yielded a risk range from early warning to lethal impacts, providing the foundation for consistent interpretation of OA monitoring data or numerical ocean model simulations to support climate change marine vulnerability assessments and evaluation of ocean management strategies. As a demonstration, two echinoderm thresholds were applied to simulations of a CCE numerical model to visualize the effects of current state of pH conditions on potential habitat.
  •  
15.
  • Berg, Carlo, et al. (författare)
  • Dissection of Microbial Community Functions during a Cyanobacterial Bloom in the Baltic Sea via Metatranscriptomics
  • 2018
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745.
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine and brackish surface waters are highly dynamic habitats that undergo repeated seasonal variations in microbial community composition and function throughout time. While succession of the various microbial groups has been well investigated, little is known about the underlying gene-expression of the microbial community. We investigated microbial interactions via metatranscriptomics over a spring to fall seasonal cycle in the brackish Baltic Sea surface waters, a temperate brackish water ecosystem periodically promoting massive cyanobacterial blooms, which have implications for primary production, nutrient cycling, and expansion of hypoxic zones. Network analysis of the gene expression of all microbes from 0.22 to 200 mu m in size and of the major taxonomic groups dissected the seasonal cycle into four components that comprised genes peaking during different periods of the bloom. Photoautotrophic nitrogen-fixing Cyanobacteria displayed the highest connectivity among the microbes, in contrast to chemoautotrophic ammonia-oxidizing Thaumarchaeota, while heterotrophs dominated connectivity among pre- and post-bloom peaking genes. The network was also composed of distinct functional connectivities, with an early season balance between carbon metabolism and ATP synthesis shifting to a dominance of ATP synthesis during the bloom, while carbon degradation, specifically through the glyoxylate shunt, characterized the post-bloom period, driven by Alphaproteobacteria as well as by Gammaproteobacteria of the SAR86 and SAR92 clusters. Our study stresses the exceptionally strong biotic driving force executed by cyanobacterial blooms on associated microbial communities in the Baltic Sea and highlights the impact cyanobacterial blooms have on functional microbial community composition.
  •  
16.
  • Berglund, Åsa M. M., 1978-, et al. (författare)
  • Effects on the food-web structure and bioaccumulation patterns of organic contaminants in a climate-altered Bothnian Sea mesocosms
  • 2023
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is expected to alter global temperature and precipitation patterns resulting in complex environmental impacts. The proposed higher precipitation in northern Scandinavia would increase runoff from land, hence increase the inflow of terrestrial dissolved organic matter (tDOM) in coastal regions. This could promote heterotrophic bacterial production and shift the food web structure, by favoring the microbial food web. The altered climate is also expected to affect transport and availability of organic micropollutants (MPs), with downstream effects on exposure and accumulation in biota. This study aimed to assess climate-induced changes in a Bothnian Sea food web structure as well as bioaccumulation patterns of MPs. We performed a mesocosms-study, focusing on aquatic food webs with fish as top predator. Alongside increased temperature, mesocosm treatments included tDOM and MP addition. The tDOM addition affected nutrient availability and boosted both phytoplankton and heterotrophic bacteria in our fairly shallow mesocosms. The increased tDOM further benefitted flagellates, ciliates and mesozooplankton, while the temperature increase and MP addition had minor effect on those organism groups. Temperature, on the other hand, had a negative impact on fish growth and survival, whereas tDOM and MP addition only had minor impact on fish. Moreover, there were indications that bioaccumulation of MPs in fish either increased with tDOM addition or decreased at higher temperatures. If there was an impact on bioaccumulation, moderately lipophilic MPs (log Kow 3.6 - 4.6) were generally affected by tDOM addition and more lipophilic MPs (log Kow 3.8 to 6.4) were generally affected by increased temperature. This study suggest that both increased temperatures and addition of tDOM likely will affect bioaccumulation patterns of MPs in shallow coastal regions, albeit with counteracting effects.
  •  
17.
  • Berkström, Charlotte, et al. (författare)
  • Fishers' Local Ecological Knowledge (LEK) on Connectivity and Seascape Management
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • In developing countries where data and resources are lacking, the practical relevance of local ecological knowledge (LEK) to expand our understanding of the environment, has been highlighted. The potential roles of the LEK varies from direct applications such as gathering environmental information to a more participative involvement of the community in the management of resources they depend on. Fishers' LEK could therefore be useful in order to obtain information on how to advance management of coastal fisheries. Many targeted fish species migrate between habitats to feed, spawn or recruit, connecting important habitats within the seascape. LEK could help provide answers to questions related to this connectivity and the identification of fish habitat use, and migrations for species and areas where such knowledge is scarce. Here we assess fishers' LEK on connectivity between multiple habitats within a tropical seascape, investigate the differences in LEK among fisher groups and the coherence between LEK and conventional scientific knowledge (CSK). The study was conducted in 2017 in Zanzibar, Tanzania, a tropical developing country. One hundred and thirty-five semi-structured interviews were conducted in six different locations focusing on fish migrations, and matching photos of fish and habitats. Differences between fisher groups were found, where fishers traveling further, exposed to multiple habitats, and who fish with multiple gears had a greater knowledge of connectivity patterns within the seascape than those that fish locally, in single habitats and with just one type of gear. A high degree of overlap in LEK and CSK was found, highlighting the potential benefits of a collaboration between scientists and fishers, and the use of LEK as complementary information in the management of small-scale fisheries.
  •  
18.
  • Bidleman, Terry, et al. (författare)
  • Sources and pathways of halomethoxybenzenes in northern Baltic estuaries
  • 2023
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Thousands of halogenated natural products (HNPs) are generated in the ocean and on land. A subset of these, halomethoxybenzenes (HMBs), are released from both natural and anthropogenic sources. Here we consider: 1. Brominated anisoles (BAs), transformation products of bromophenols. 2. Drosophilin A methyl ether (DAME: 1,2,4,5-tetrachloro-3,6-dimethoxybenzene), a secondary metabolite of terrestrial fungi. 3. Tetrachloroveratrole (TeCV: 1,2,3,4-tetrachloro-5,6-dimethoxybenzene), a lignin byproduct found in bleached kraft mill effluent. 4. Pentachloroanisole (PeCA), a metabolite of the wood preservative pentachlorophenol.Methods: We examined several ecosystem compartments to determine sources and exchange processes for these HMBs: air, precipitation, rivers, forest fungi and litter, and water from northern Baltic estuaries and offshore. Samples were analyzed for HMBs by capillary gas chromatography – quadrupole mass spectrometry.Results and discussion: All four types of HMBs were found in air, and BAs, DAME and TeCV were also present in precipitation. BAs and DAME were common in rivers and estuaries, whereas TeCV was low and PeCA was below detection. DAME was identified in several species of fungi and in forest litter; TeCV was occasionally present, but BAs and PeCA were below detection. Concentrations of BAs were higher in estuaries than in rivers or offshore waters, showing that estuaries are hot spots for production. BAs were negatively or not correlated with chlorophyll-a, suggesting contribution by heterotrophic bacteria as well as known production by phytoplankton and macroalgae. DAME was negatively or not correlated with BAs and did not appear to be produced in the estuaries; fungi and forest litter containing fungal mycelia are suggested as sources. HMBs volatilize from sea and land, disperse through the atmosphere, and return via precipitation and rivers. Production and biogeochemical cycles are influenced by climate change and we suggest BAs and DAME for following partitioning and exchange processes.
  •  
19.
  • Billman, Maja, et al. (författare)
  • Small carbon stocks in sediments of Baltic Sea eelgrass meadows
  • 2023
  • Ingår i: Frontiers in Marine Science. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrass meadows act as an effective carbon sink and store carbon in the sediments for substantial periods of time. The drivers of carbon sequestration are complex, and global and regional estimates of carbon stocks have large uncertainties. Here, we report new carbon stock estimates from 14 sites along the Swedish coast and compile existing literature to estimate the magnitude of carbon stocks of Zostera marina (eelgrass) meadows in the Baltic Sea. Eelgrass meadows in the Baltic Sea have considerably lower carbon content and lower stocks (0.25 ± 0.21% DW, 635 ± 321 g C m-2) than in the Kattegat-Skagerrak region (3.25 ± 2.78% DW, 3457 ± 3382 g C m-2) and the average for temperate regions in general (1.4 ± 0.4% DW, 2721 ± 989 g C m-2). Unfavorable growing conditions for eelgrass in the Baltic Sea often lead to meadows occurring in areas of high hydrodynamics, preventing significant carbon accumulation. Stable isotopes revealed that the dominating source of organic carbon in the meadows was planktonic, further highlighting that Baltic Sea eelgrass meadows are not major carbon reservoirs in comparison to unvegetated sediments and other seagrass areas. The results also highlight that environmental conditions drive intraspecific variation of carbon sequestration on large spatial scales. Overall, the carbon stocks and sequestration potential in eelgrass meadows of the Baltic Sea are small compared to other temperate regions.
  •  
20.
  • Blasiak, Robert, et al. (författare)
  • Evolving Perspectives of Stewardship in the Seafood Industry
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Humanity has never benefited more from the ocean as a source of food, livelihoods, and well-being, yet on a global scale this has been accompanied by trajectories of degradation and persistent inequity. Awareness of this has spurred policymakers to develop an expanding network of ocean governance instruments, catalyzed civil society pressure on the public and private sector, and motivated engagement by the general public as consumers and constituents. Among local communities, diverse examples of stewardship have rested on the foundation of care, knowledge and agency. But does an analog for stewardship exist in the context of globally active multinational corporations? Here, we consider the seafood industry and its efforts to navigate this new reality through private governance. We examine paradigmatic events in the history of the sustainable seafood movement, from seafood boycotts in the 1970s through to the emergence of certification measures, benchmarks, and diverse voluntary environmental programs. We note four dimensions of stewardship in which efforts by actors within the seafood industry have aligned with theoretical concepts of stewardship, which we describe as (1) moving beyond compliance, (2) taking a systems perspective, (3) living with uncertainty, and (4) understanding humans as embedded elements of the biosphere. In conclusion, we identify emerging stewardship challenges for the seafood industry and suggest the urgent need to embrace a broader notion of ocean stewardship that extends beyond seafood.
  •  
21.
  • Blenckner, Thorsten, et al. (författare)
  • The Risk for Novel and Disappearing Environmental Conditions in the Baltic Sea
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Future climate biogeochemical projections indicate large changes in the ocean with environmental conditions not experienced at present referred to as novel, or may even disappear. These climate-induced changes will most likely affect species distribution via changes in growth, behavior, evolution, dispersal, and species interactions. However, the future risk of novel and disappearing environmental conditions in the ocean is poorly understood, in particular for compound effects of climate and nutrient management changes. We map the compound risk of the occurrence of future novel and disappearing environmental conditions, analyze the outcome of climate and nutrient management scenarios for the world’s largest estuary, the Baltic Sea, and the potential consequences for three charismatic species. Overall, the future projections show, as expected, an increase in environmental novelty over time. The future nutrient reduction management that improves the eutrophication status of the Baltic Sea contributes to large novel and disappearing conditions. We show the consequences of novel and disappearing environmental conditions for fundamental niches of three charismatic species under different scenarios. This first step toward comprehensively analyzing environmental novelty and disappearing conditions for a marine system illustrates the urgent need to include novelty and disappearing projection outputs in Earth System Models. Our results further illustrate that adaptive management is needed to account for the emergence of novelty related to the interplay of multiple drivers. Overall, our analysis provides strong support for the expectation of novel ecological communities in marine systems, which may affect ecosystem services, and needs to be accounted for in sustainable future management plans of our oceans.
  •  
22.
  • Bosi, Sofia, et al. (författare)
  • The Role of Stokes Drift in the Dispersal of North Atlantic Surface Marine Debris
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the physical mechanisms behind the transport and accumulation of floating objects in the ocean is crucial to efficiently tackle the issue of marine pollution. The main sinks of marine plastic are the coast and the bottom sediment. This study focuses on the former, investigating the timescales of dispersal from the ocean surface and onto coastal accumulation areas through a process called "beaching. " Previous studies found that the Stokes drift can reach the same magnitude as the Eulerian current speed and that it has a long-term effect on the trajectories of floating objects. Two particle tracking models (PTMs) are carried out and then compared, one with and one without Stokes drift, named PTM-SD and PTM-REF, respectively. Eulerian velocity and Stokes drift data from global reanalysis datasets are used for particle advection. Particles in the PTM-SD model are found to beach at a yearly rate that is double the rate observed in PTM-REF. The main coastal attractors are consistent with the direction of large-scale atmospheric circulation (Westerlies and Trade Winds). After 12 years (at the end of the run), the amount of beached particles is 20% larger in PTM-SD than in PTM-REF. Long-term predictions carried out with the aid of adjacency matrices found that after 100 years all particles have beached in PTM-SD, while 8% of the all seeded particles are still floating in PTM-REF. The results confirm the need to accurately represent the Stokes drift in particle models attempting to predict the behaviour of marine debris, in order to avoid overestimation of its residence time in the ocean and effectively guide policies toward prevention and removal.
  •  
23.
  • Both, Adrianus, 1985-, et al. (författare)
  • Detrital Subsidies in the Diet of Mytilus edulis : Macroalgal Detritus Likely Supplements Essential Fatty Acids
  • 2020
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 7, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Detritus is a frequent, poorly defined, component of bivalve growth and carrying capacity models. The purpose of this study was to determine the proportional contributions of detrital material derived from primary producers (phytoplankton, macroalgae, Spartina alterniflora, and terrestrial leaf litter) to particulate organic matter (POM) and blue mussel’s (Mytilus edulis) diet within a temperate bay (Saco Bay, ME, United States). We assessed which detrital sources, if any, warranted incorporation into modeling efforts. Stable isotopes (δ13C and δ15N) and fatty acid biomarkers (FA) of mussels, size fractionated (<100 μm) POM, and primary producer endmembers (phytoplankton, Saccharina latissima, Ascophyllum nodosum, Chondrus crispus, Spartina alterniflora and leaf litter) collected between 2016 and 2017 were used to estimate endmember contributions to POM and mussel diets. Based on FAs dinoflagellates were the most abundant phytoplankton in Saco Bay, even during the fall diatom bloom. Diatoms within the bay were primarily centric, but pennate diatoms were at times present in the water column (e.g., in September). Following abundances of dinoflagellates, and centric and pennate diatoms, 22:6ω3 (DHA) was the most abundant essential FA (8.6 ± 0.1% total FAs), followed by 20:5ω3 (EPA: 7.0 ± 0.1%) and 20:4ω6 (ARA: 0.3 ± 0.1%). On average, phytoplankton derived organic matter contributed 22.1 ± 0.3% of the total POM in the bay. The concentration of non-fresh phytoplankton organic matter, or remaining organic matter (REMORG), was positively correlated with all endmember biomarkers. However, the proportion (%) of vascular plant, macroalgal, and detrital FAs was negatively correlated with the concentration of REMORG. This finding suggests in periods of low productivity, vascular plant and macroalgal detritus are proportionally more important contributors to POM. Mussels were broad spectrum omnivores, consuming phytoplankton, zooplankton, and detrital material. Detrital contributions to mussel diets were important (minimum of 16% of diet). Although small, macroalgae’s dietary contribution (8%) to M. edulis may be important. Macroalgal detritus contained essential FAs (20:5ω3 and 20:4ω6) that could supplement mussel diets, as M. edulis in Saco Bay were likely limited by 20:5ω3. Consideration of how macroalgal detritus affects the availability of essential FAs in POM may be useful to incorporate into aquaculture site selection.
  •  
24.
  • Bradshaw, Clare, et al. (författare)
  • Physical Disturbance by Bottom Trawling Suspends Particulate Matter and Alters Biogeochemical Processes on and Near the Seafloor
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bottom trawling is known to affect benthic faunal communities but its effects on sediment suspension and seabed biogeochemistry are less well described. In addition, few studies have been carried out in the Baltic Sea, despite decades of trawling in this unique brackish environment and the frequent occurrence of trawling in areas where hypoxia and low and variable salinity already act as ecosystem stressors. We measured the physical and biogeochemical impacts of an otter trawl on a muddy Baltic seabed. Multibeam bathymetry revealed a 36 m-wide trawl track, comprising parallel furrows and sediment piles caused by the trawl doors and shallower grooves from the groundgear, that displaced 1,000 m3 (500 t) sediment and suspended 9.5 t sediment per km of track. The trawl doors had less effect than the rest of the gear in terms of total sediment mass but per m2 the doors had 5× the displacement and 2× the suspension effect, due to their greater penetration and hydrodynamic drag. The suspended sediment spread >1 km away over the following 3–4 days, creating a 5–10 m thick layer of turbid bottom water. Turbidity reached 4.3 NTU (7 mgDW L–1), 550 m from the track, 20 h post-trawling. Particulate Al, Ti, Fe, P, and Mn were correlated with the spatio-temporal pattern of suspension. There was a pulse of dissolved N, P, and Mn to a height of 10 m above the seabed within a few hundred meters of the track, 2 h post-trawling. Dissolved methane concentrations were elevated in the water for at least 20 h. Sediment biogeochemistry in the door track was still perturbed after 48 h, with a decreased oxygen penetration depth and nutrient and oxygen fluxes across the sediment-water interface. These results clearly show the physical effects of bottom trawling, both on seabed topography (on the scale of km and years) and on sediment and particle suspension (on the scale of km and days-weeks). Alterations to biogeochemical processes suggest that, where bottom trawling is frequent, sediment biogeochemistry may not have time to recover between disturbance events and elevated turbidity may persist, even outside the trawled area.
  •  
25.
  • Brakel, J., et al. (författare)
  • Modulation of the Eelgrass - Labyrinthula zosterae Interaction Under Predicted Ocean Warming, Salinity Change and Light Limitation
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine infectious diseases can have large-scale impacts when they affect foundation species such as seagrasses and corals. Interactions between host and disease, in turn, may be modulated by multiple perturbations associated with global change. A case in point is the infection of the foundation species Zostera marina (eelgrass) with endophytic net slime molds (Labyrinthula zosterae), the putative agent of eelgrass wasting disease that caused one of the most severe marine pandemics across the North-Atlantic in the 1930s. The contemporary presence of L. zosterae in many eelgrass meadows throughout Europe raises the question whether such a pandemic may reappear if coastal waters become more eutrophic, warmer and less saline. Accordingly, we exposed uninfected Baltic Sea Z. marina plants raised from seeds to full factorial combinations of controlled L. zosterae inoculation, heat stress, light limitation (mimicking one consequence of eutrophication) and two salinity levels. We followed eelgrass wasting disease dynamics, along with several eelgrass responses such as leaf growth, mortality and carbohydrate storage, as well as the ability of plants to chemically inhibit L. zosterae growth. Contrary to our expectation, inoculation with L. zosterae reduced leaf growth and survival only under the most adverse condition to eelgrass (reduced light and warm temperatures). We detected a strong interaction between salinity and temperature on L. zosterae abundance and pathogenicity. The protist was unable to infect eelgrass under high temperature (27 degrees C) in combination with low salinity (12 psu). With the exception of a small positive effect of temperature alone, no further effects of any of the treatment combinations on the defense capacity of eelgrass against L. zosterae were detectable. This work supports the idea that contemporary L. zosterae isolates neither represent an immediate risk for eelgrass beds in the Baltic Sea, nor a future one under the predicted salinity decrease and warming of the Baltic Sea.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 263
Typ av publikation
tidskriftsartikel (221)
forskningsöversikt (42)
Typ av innehåll
refereegranskat (259)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Swart, Sebastiaan, 1 ... (10)
Pavia, Henrik, 1964 (8)
Norkko, Alf (8)
Andersson, Agneta (7)
Dahlgren, Thomas G., ... (7)
Kamenos, Nicholas A. (7)
visa fler...
Dupont, Samuel, 1971 (6)
Müller-Karulis, Bärb ... (6)
Undeland, Ingrid, 19 ... (5)
Cardinale, Massimili ... (5)
Toth, Gunilla B., 19 ... (5)
Gille, Sarah T. (4)
Steinhagen, Sophie (4)
Gustafsson, Bo G. (4)
Brugel, Sonia (4)
Turner, David R., 19 ... (3)
Broström, Göran (3)
Obst, Matthias, 1974 (3)
Cárdenas, Paco, 1976 ... (3)
Tysklind, Mats (3)
Thomsen, Laurenz, 19 ... (3)
Casini, Michele (3)
Omstedt, Anders, 194 ... (3)
Dutta, Joydeep, Prof ... (3)
Nordlund, Lina M. (3)
Tomczak, Maciej T. (3)
Silva, Joao (3)
Larsson, Ann I., 196 ... (3)
Larsson, Henrik (3)
Gullström, Martin (3)
Conley, Daniel J. (3)
Hassellöv, Ida-Maja, ... (3)
Blenckner, Thorsten (3)
Jakobsson, Martin (3)
Haglund, Peter (3)
Goni, Gustavo (3)
Mazloff, Matthew (3)
Meredith, Michael P. (3)
Björk, Mats, 1960- (3)
Kinnby, Alexandra, 1 ... (3)
Rahlff, Janina (3)
Crona, Beatrice (3)
Rapp, Hans-Tore (3)
Roquet, Fabien, 1982 (3)
Wild, Christian (3)
Jakobsson-Thor, Stin ... (3)
Glover, Adrian G. (3)
Hennige, Sebastian J ... (3)
Chao, Yi (3)
Savchuk, Oleg P. (3)
visa färre...
Lärosäte
Göteborgs universitet (85)
Stockholms universitet (69)
Sveriges Lantbruksuniversitet (36)
Umeå universitet (29)
Uppsala universitet (26)
Chalmers tekniska högskola (14)
visa fler...
Lunds universitet (11)
Kungliga Tekniska Högskolan (9)
Linnéuniversitetet (9)
Naturhistoriska riksmuseet (9)
Södertörns högskola (4)
Örebro universitet (2)
Högskolan Kristianstad (1)
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Högskolan i Gävle (1)
Mälardalens universitet (1)
Malmö universitet (1)
Högskolan i Borås (1)
RISE (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (263)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (239)
Lantbruksvetenskap (40)
Teknik (17)
Samhällsvetenskap (10)
Medicin och hälsovetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy