SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2352 345X "

Sökning: L773:2352 345X

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Targeted Delivery of Stk25 Antisense Oligonucleotides to Hepatocytes Protects Mice Against Nonalcoholic Fatty Liver Disease
  • 2019
  • Ingår i: CMGH Cellular and Molecular Gastroenterology and Hepatology. - : Elsevier BV. - 2352-345X. ; 7:3, s. 597-618
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide. Currently, no specific pharmacologic therapy is available for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of hepatic lipid partitioning and NAFLD/NASH. Here, we studied the metabolic benefit of liver-specific STK25 inhibitors on NAFLD development and progression in a mouse model of diet-induced obesity. Methods: We developed a hepatocyte-specific triantennary N-acetylgalactosamine (GalNAc)-conjugated antisense oligonucleotide (ASO) targeting Stk25 and evaluated its effect on NAFLD features in mice after chronic exposure to dietary lipids. Results: We found that systemic administration of hepatocyte-targeting GalNAc-Stk25 ASO in obese mice effectively ameliorated steatosis, inflammatory infiltration, hepatic stellate cell activation, nutritional fibrosis, and hepatocellular damage in the liver compared with mice treated with GalNAc-conjugated nontargeting ASO, without any systemic toxicity or local tolerability concerns. We also observed protection against high-fat-diet–induced hepatic oxidative stress and improved mitochondrial function with Stk25 ASO treatment in mice. Moreover, GalNAc-Stk25 ASO suppressed lipogenic gene expression and acetyl-CoA carboxylase protein abundance in the liver, providing insight into the molecular mechanisms underlying repression of hepatic steatosis. Conclusions: This study provides in vivo nonclinical proof-of-principle for the metabolic benefit of liver-specific inhibition of STK25 in the context of obesity and warrants future investigations to address the therapeutic potential of GalNAc-Stk25 ASO in the prevention and treatment of NAFLD.
  •  
2.
  • Daoud, Fatima, et al. (författare)
  • Inducible Deletion of YAP and TAZ in Adult Mouse Smooth Muscle Causes Rapid and Lethal Colonic Pseudo-Obstruction
  • 2021
  • Ingår i: Cellular and Molecular Gastroenterology and Hepatology. - : Elsevier BV. - 2352-345X. ; 11:2, s. 623-637
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & AimsYAP (Yap1) and TAZ (Wwtr1) are transcriptional co-activators and downstream effectors of the Hippo pathway, which play crucial roles in organ size control and cancer pathogenesis. Genetic deletion of YAP/TAZ has shown their critical importance for embryonic development of the heart, vasculature, and gastrointestinal mesenchyme. The aim of this study was to determine the functional role of YAP/TAZ in adult smooth muscle cells in vivo.MethodsBecause YAP and TAZ are mutually redundant, we used YAP/TAZ double-floxed mice crossed with mice that express tamoxifen-inducible CreERT2 recombinase driven by the smooth muscle–specific myosin heavy chain promoter.ResultsDouble-knockout of YAP/TAZ in adult smooth muscle causes lethality within 2 weeks, mainly owing to colonic pseudo-obstruction, characterized by severe distension and fecal impaction. RNA sequencing in colon and urinary bladder showed that smooth muscle markers and muscarinic receptors were down-regulated in the YAP/TAZ knockout. The same transcripts also correlated with YAP/TAZ in the human colon. Myograph experiments showed reduced contractility to depolarization by potassium chloride and a nearly abolished muscarinic contraction and spontaneous activity in colon rings of YAP/TAZ knockout.ConclusionsYAP and TAZ in smooth muscle are guardians of colonic contractility and control expression of contractile proteins and muscarinic receptors. The knockout model has features of human chronic intestinal pseudo-obstruction and may be useful for studying this disease.
  •  
3.
  • Escudero-Hernández, Celia, et al. (författare)
  • Transcriptomic profiling of collagenous colitis identifies hallmarks of non-destructive inflammatory bowel disease.
  • 2021
  • Ingår i: Cellular and molecular gastroenterology and hepatology. - : American Gastroenterological Association. - 2352-345X. ; 12:2, s. 665-687
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: The pathophysiology of the inflammatory bowel disease collagenous colitis (CC) is poorly described. Our aim was to use RNA sequencing of mucosal samples from patients with active CC, CC in remission, refractory CC, ulcerative colitis (UC), and controls to gain insight into CC pathophysiology, identify genetic signatures linked to CC, and uncover potentially druggable disease pathways.METHODS: We performed whole transcriptome sequencing of CC samples from patients before and during treatment with the corticosteroid drug budesonide, CC steroid-refractory patients, UC patients, and healthy controls (n=9-13). Bulk mucosa and laser-captured microdissected intestinal epithelial cell (IEC) gene expression were analyzed by gene-set enrichment and gene-set variation analyses to identify significant pathways and cells, respectively, altered in CC. Leading genes and cells were validated using reverse transcription quantitative PCR and/or immunohistochemistry.RESULTS: We identified an activation of the adaptive immune response to bacteria and viruses in active CC that could be mediated by dendritic cells. Moreover, IECs display hyperproliferation and increased antigen presentation in active CC. Further analysis revealed that genes related to the immune response (DUOX2, PLA2G2A, CXCL9), DNA transcription (CTR9), protein processing (JOSD1, URI1) and ion transport (SLC9A3) remained dysregulated even after budesonide-induced remission. Budesonide-refractory CC patients fail to restore normal gene expression, and displayed a transcriptomic profile close to UC.CONCLUSIONS: Our study confirmed the implication of innate and adaptive immune responses in CC, governed by IECs and dendritic cells, respectively; and identified ongoing epithelial damage. Refractory CC could share pathomechanisms with UC.
  •  
4.
  • Fuchs, C. D., et al. (författare)
  • GLP-2 Improves Hepatic Inflammation and Fibrosis in Mdr2-/- Mice Via Activation of NR4a1/Nur77 in Hepatic Stellate Cells and Intestinal FXR Signaling
  • 2023
  • Ingår i: Cellular and Molecular Gastroenterology and Hepatology. - 2352-345X. ; 16:5, s. 847-856
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Glucagon-like peptide (GLP)-2 may exert antifibrotic effects on hepatic stellate cells (HSCs). Thus, we aimed to test whether application of the GLP-2 analogue teduglutide has hepatoprotective and antifibrotic effects in the Mdr2/Abcb4(-/-) mouse model of sclerosing cholangitis displaying hepatic inflammation and fibrosis. METHODS: Mdr2(-/-) mice were injected daily for 4 weeks with teduglutide followed by gene expression profiling (bulk liver; isolated HSCs) and immunohistochemistry. Activated HSCs (LX2 cells) and immortalized human hepatocytes and human intestinal organoids were treated with GLP-2. mRNA profiling by reverse transcription polymerase chain reaction and elec-trophoretic mobility shift assay using cytosolic and nuclear protein extracts was performed. RESULTS: Hepatic inflammation, fibrosis, and reactive chol-angiocyte phenotype were improved in GLP-2-treated Mdr2(-/-) mice. Primary HSCs isolated from Mdr2(-/-)mice and LX2 cells exposed to GLP-2 in vitro displayed significantly increased mRNA expression levels of NR4a1/Nur77 (P < .05). Electro-phoretic mobility shift assay revealed an increased nuclear NR4a1 binding after GLP-2 treatment in LX2 cells. Moreover, GLP-2 alleviated the Tgf beta-mediated reduction of NR4a1 nuclear binding activity. In vivo, GLP-2 treatment of Mdr2(-/-) mice resulted in increased intrahepatic levels of muricholic acids (accordingly Cyp2c70 mRNA expression was significantly increased), and in reduced mRNA levels of Cyp7a1 and FXR. Serum Fgf15 levels were increased in Mdr2(-/-) mice treated with GLP-2. Accordingly, GLP-2 treatment of human intestinal organoids activated their FXR-FGF19 signaling axis. CONCLUSIONS: GLP-2 treatment increased NR4a1/Nur77 activation in HSCs, subsequently attenuating their activation. GLP-2 promoted intestinal Fxr-Fgf15/19 signaling resulting in reduced Cyp7a1 and increased Cyp2c70 expression in the liver, contributing to hepatoprotective and antifibrotic effects of GLP2 in the Mdr2(-/-) mouse model.
  •  
5.
  •  
6.
  • Kurhe, Yeshwant, et al. (författare)
  • Antagonizing STK25 Signaling Suppresses the Development of Hepatocellular Carcinoma Through Targeting Metabolic, Inflammatory, and Pro-Oncogenic Pathways
  • 2022
  • Ingår i: Cellular and Molecular Gastroenterology and Hepatology. - : Elsevier BV. - 2352-345X. ; 13:2, s. 405-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Y BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is one of the most fatal and fastest-growing cancers. Recently, nonalcoholic steatohepatitis (NASH) has been recognized as a major catalyst for HCC. Thus, additional research is critically needed to identify mechanisms involved in NASHinduced hepatocarcinogenesis, to advance the prevention and treatment of NASH-driven HCC. Because the sterile 20-type kinase serine/threonine kinase 25 (STK25) exacerbates NASH-related phenotypes, we investigated its role in HCC development and aggravation in this study. METHODS: Hepatocarcinogenesis was induced in the context of NASH in Stk25 knockout and wild-type mice by combining chemical procarcinogens and a dietary challenge. In the first cohort, a single injection of diethylnitrosamine was combined with a high-fat diet-feeding. In the second cohort, chronic administration of carbon tetrachloride was combined with a choline-deficient L-amino-acid-defined diet. To study the cell-autonomous mode of action of STK25, we silenced this target in the human hepatocarcinoma cell line HepG2 by small interfering RNA. RESULTS: In both mouse models of NASH-driven HCC, the livers from Stk25(-/-) mice showed a markedly lower tumor burden compared with wild-type controls. We also found that genetic depletion of STK25 in mice suppressed liver tumor growth through reduced hepatocellular apoptosis and decreased compensatory proliferation, by a mechanism that involves protection against hepatic lipotoxicity and inactivation of STAT3, ERK1/2, and p38 signaling. Consistently, silencing of STK25 suppressed proliferation, apoptosis, migration, and invasion in HepG2 cells, which was accompanied by lower expression of the markers of epithelial-mesenchymal transition and autophagic flux. CONCLUSIONS: This study provides evidence that antagonizing STK25 signaling hinders the development of NASH-related HCC and provides an impetus for further analysis of STK25 as a therapeutic target for NASH-induced HCC treatment in human beings.
  •  
7.
  •  
8.
  • Maasfeh, Lujain, et al. (författare)
  • Impaired Luminal Control of Intestinal Macrophage Maturation in Patients With Ulcerative Colitis During Remission
  • 2021
  • Ingår i: Cellular and Molecular Gastroenterology and Hepatology. - : Elsevier BV. - 2352-345X. ; 12:4, s. 1415-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Intestinal macrophages adopt a hyporesponsive phenotype through education by local signals. Lack of proper macrophage maturation in patients with ulcerative colitis (UC) in remission may initiate gut inflammation. The aim, therefore, was to determine the effects of fecal luminal factors derived from healthy donors and UC patients in remission on macrophage phenotype and function. METHODS: Fecal supernatants (FS) were extracted from fecal samples of healthy subjects and UC patients in remission. Monocytes were matured into macrophages in the presence of granulocyte-macrophage colony-stimulating factor without/with FS, stimulated with lipopolysaccharide, and macrophage phenotype and function were assessed. Fecal metabolomic profiles were analyzed by gas-chromatography/mass-spectrometry. RESULTS: Fecal luminal factors derived from healthy donors were effective in down-regulating Toll-like receptor signaling, cytokine signaling, and antigen presentation in macrophages. Fecal luminal factors derived from UC patients in remission were less potent in inducing lipopolysaccharide hyporesponsiveness and modulating expression of genes involved in macrophage cytokine and Toll-like receptor signaling pathways. Although phagocytic and bactericidal abilities of macrophages were not affected by FS treatment, healthy FS-treated macrophages showed a greater ability to suppress cluster of differentiation 4(+) T-cell activation and interferon gamma secretion compared with UC remission FS-treated counterparts. Furthermore, metabolomic analysis showed differential fecal metabolite composition for healthy donors and UC patients in remission. CONCLUSIONS: Our data indicate that UC patients in remission lack luminal signals able to condition macrophages toward a hyporesponsive and tolerogenic phenotype, which may contribute to their persistent vulnerability to relapse.
  •  
9.
  • Mancini, Nicole L., et al. (författare)
  • Crohns Disease Pathobiont Adherent-Invasive E coli Disrupts Epithelial Mitochondrial Networks With Implications for Gut Permeability
  • 2021
  • Ingår i: Cellular and molecular gastroenterology and hepatology. - : American Gastroenterological Association. - 2352-345X. ; 11:2, s. 551-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & aims: Adherent-invasive Escherichia coli are implicated in inflammatory bowel disease, and mitochondrial dysfunction has been observed in biopsy specimens from patients with inflammatory bowel disease. As a novel aspect of adherent-invasive E coli-epithelial interaction, we hypothesized that E coli (strain LF82) would elicit substantial disruption of epithelial mitochondrial form and function.Methods: Monolayers of human colon-derived epithelial cell lines were exposed to E coli-LF82 or commensal E coli and RNA sequence analysis, mitochondrial function (adenosine triphosphate synthesis) and dynamics (mitochondrial network imaging, immunoblotting for fission and fusion proteins), and epithelial permeability (transepithelial resistance, flux of fluorescein isothiocyanate-dextran and bacteria) were assessed.Results: E coli-LF82 significantly affected epithelial expression of ∼8600 genes, many relating to mitochondrial function. E coli-LF82-infected epithelia showed swollen mitochondria, reduced mitochondrial membrane potential and adenosine triphosphate, and fragmentation of the mitochondrial network: events not observed with dead E coli-LF82, medium from bacterial cultures, or control E coli. Treatment with Mitochondrial Division Inhibitor 1 (Mdivi1, inhibits dynamin-related peptide 1, guanosine triphosphatase principally responsible for mitochondrial fission) or P110 (prevents dynamin-related peptide 1 binding to mitochondrial fission 1 protein) partially reduced E coli-LF82-induced mitochondrial fragmentation in the short term. E coli-LF82-infected epithelia showed loss of the long isoform of optic atrophy factor 1, which mediates mitochondrial fusion. Mitochondrial Division Inhibitor 1 reduced the magnitude of E coli-LF82-induced increased transepithelial flux of fluorescein isothiocyanate dextran. By 8 hours after infection, increased cytosolic cytochrome C and DNA fragmentation were apparent without evidence of caspase-3 or apoptosis inducing factor activation.Conclusions: Epithelial mitochondrial fragmentation caused by E coli-LF82 could be targeted to maintain cellular homeostasis and mitigate infection-induced loss of epithelial barrier function. Data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession numbers GSE154121 and GSE154122 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154121).
  •  
10.
  •  
11.
  •  
12.
  • Virtanen, H, et al. (författare)
  • Reply
  • 2022
  • Ingår i: Cellular and molecular gastroenterology and hepatology. - : Elsevier BV. - 2352-345X. ; 14:4, s. 968-969
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
13.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy