SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2397 3722 "

Sökning: L773:2397 3722

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Boy, Michael, et al. (författare)
  • Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates
  • 2022
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A multitude of biogeochemical feedback mechanisms govern the climate sensitivity of Earth in response to radiation balance perturbations. One feedback mechanism, which remained missing from most current Earth System Models applied to predict future climate change in IPCC AR6, is the impact of higher temperatures on the emissions of biogenic volatile organic compounds (BVOCs), and their subsequent effects on the hydroxyl radical (OH) concentrations. OH, in turn, is the main sink term for many gaseous compounds including methane, which is the second most important human-influenced greenhouse gas in terms of climate forcing. In this study, we investigate the impact of this feedback mechanism by applying two models, a one-dimensional chemistry-transport model, and a global chemistry-transport model. The results indicate that in a 6 K temperature increase scenario, the BVOC-OH-CH4 feedback increases the lifetime of methane by 11.4% locally over the boreal region when the temperature rise only affects chemical reaction rates, and not both, chemistry and BVOC emissions. This would lead to a local increase in radiative forcing through methane (ΔRFCH4) of approximately 0.013 Wm−2 per year, which is 2.1% of the current ΔRFCH4. In the whole Northern hemisphere, we predict an increase in the concentration of methane by 0.024% per year comparing simulations with temperature increase only in the chemistry or temperature increase in chemistry and BVOC emissions. This equals approximately 7% of the annual growth rate of methane during the years 2008–2017 (6.6 ± 0.3 ppb yr−1) and leads to an ΔRFCH4 of 1.9 mWm−2 per year.
  •  
3.
  • Chandrika Ranjendra Nair, Hari Ram, 1989-, et al. (författare)
  • Aerosol demasking enhances climate warming over South Asia
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic aerosols mask the climate warming caused by greenhouse gases (GHGs). In the absence of observational constraints, large uncertainties plague the estimates of this masking effect. Here we used the abrupt reduction in anthropogenic emissions observed during the COVID-19 societal slow-down to characterize the aerosol masking effect over South Asia. During this period, the aerosol loading decreased substantially and our observations reveal that the magnitude of this aerosol demasking corresponds to nearly three-fourths of the CO2-induced radiative forcing over South Asia. Concurrent measurements over the northern Indian Ocean unveiled a ~7% increase in the earth’s surface-reaching solar radiation (surface brightening). Aerosol-induced atmospheric solar heating decreased by ~0.4 K d−1. Our results reveal that under clear sky conditions, anthropogenic emissions over South Asia lead to nearly 1.4 W m−2 heating at the top of the atmosphere during the period March–May. A complete phase-out of today’s fossil fuel combustion to zero-emission renewables would result in rapid aerosol demasking, while the GHGs linger on.
  •  
4.
  • Chandrika Ranjendra Nair, Hari Ram, 1989-, et al. (författare)
  • Aerosol demasking enhances climate warming over South Asia
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic aerosols mask the climate warming caused by greenhouse gases (GHGs). In the absence of observational constraints, large uncertainties plague the estimates of this masking effect. Here we used the abrupt reduction in anthropogenic emissions observed during the COVID-19 societal slow-down to characterize the aerosol masking effect over South Asia. During this period, the aerosol loading decreased substantially and our observations reveal that the magnitude of this aerosol demasking corresponds to nearly three-fourths of the CO2-induced radiative forcing over South Asia. Concurrent measurements over the northern Indian Ocean unveiled a ~7% increase in the earth’s surface-reaching solar radiation (surface brightening). Aerosol-induced atmospheric solar heating decreased by ~0.4 K d−1. Our results reveal that under clear sky conditions, anthropogenic emissions over South Asia lead to nearly 1.4 W m−2 heating at the top of the atmosphere during the period March–May. A complete phase-out of today’s fossil fuel combustion to zero-emission renewables would result in rapid aerosol demasking, while the GHGs linger on.
  •  
5.
  • Diodato, Nazzareno, et al. (författare)
  • Historical predictability of rainfall erosivity : a reconstruction for monitoring extremes over Northern Italy (1500-2019)
  • 2020
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Erosive storms constitute a major natural hazard. They are frequently a source of erosional processes impacting the natural landscape with considerable economic consequences. Understanding the aggressiveness of storms (or rainfall erosivity) is essential for the awareness of environmental hazards as well as for knowledge of how to potentially control them. Reconstructing historical changes in rainfall erosivity is challenging as it requires continuous time-series of short-term rainfall events. Here, we present the first homogeneous environmental (1500-2019 CE) record, with the annual resolution, of storm aggressiveness for the Po River region, northern Italy, which is to date also the longest such time-series of erosivity in the world. To generate the annual erosivity time-series, we developed a model consistent with a sample (for 1981-2015 CE) of detailed Revised Universal Soil Loss Erosion-based data obtained for the study region. The modelled data show a noticeable descending trend in rainfall erosivity together with a limited inter-annual variability until similar to 1708, followed by a slowly increasing erosivity trend. This trend has continued until the present day, along with a larger inter-annual variability, likely associated with an increased occurrence of short-term, cyclone-related, extreme rainfall events. These findings call for the need of strengthening the environmental support capacity of the Po River landscape and beyond in the face of predicted future changing erosive storm patterns.
  •  
6.
  • Fang, Wenzheng, et al. (författare)
  • Combined influences of sources and atmospheric bleaching on light absorption of water-soluble brown carbon aerosols
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-absorbing Brown Carbon (BrC) aerosols partially offset the overall climate-cooling of aerosols. However, the evolution of BrC light-absorption during atmospheric transport is poorly constrained. Here, we utilize optical properties, ageing-diagnostic delta C-13-BrC and transport time to deduce that the mass absorption cross-section (MACWS-BrC) is decreasing by similar to 50% during long-range oversea transport, resulting in a first-order bleaching rate of 0.24 day(-1) during the 3-day transit from continental East Asia to a south-east Yellow Sea receptor. A modern C-14 signal points to a strong inverse correlation between BrC light-absorption and age of the source material. Combining this with results for South Asia reveals a striking agreement between these two major-emission regions of rapid photobleaching of BrC with a higher intrinsic absorptivity for BrC stemming from biomass burning. The consistency of bleaching parameters constrained independently for the outflows of both East and South Asia indicates that the weakening of BrC light absorption, thus primarily related to photochemical processes rather than sources, is likely a ubiquitous phenomenon.
  •  
7.
  • Fuentes-Franco, Ramón, et al. (författare)
  • Winter heavy precipitation events over Northern Europe modulated by a weaker NAO variability by the end of the 21st century
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We use an ensemble of models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) to analyse the number of days with extreme winter precipitation over Northern Europe and its relationship to the North Atlantic Oscillation (NAO), for the historical period 1950-2014 and two future 21st-century scenarios. Here we find that over Northern Europe, the models project twice more extreme precipitation days by the end of the 21st century under the high-emission scenario compared to the historical period. We also find a weakening of the NAO variability in the second half of the 21st century in the high greenhouse gas emission scenario compared to the historical period, as well as an increasing correlation between extreme winter precipitation events and the NAO index in both future scenarios. Models with a projected decrease in the NAO variability across the 21st century show a positive trend in the number of days with extreme winter precipitation over Northern Europe. These results highlight the role played by NAO in modulating extreme winter precipitation events.
  •  
8.
  • Li, Guoqiang, et al. (författare)
  • A comprehensive dataset of luminescence chronologies and environmental proxy indices of loess-paleosol deposits across Asia
  • 2024
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Nature. - 2397-3722. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Loess-paleosol sequences have been used in Asia to study climate and environmental changes during the Quaternary. The scarcity of age control datasets and proxy indices analysis data for Asian loess has limited our understanding of loess depositional processes and the reconstruction of paleoclimatic changes from loess-paleosol records. In this study, we present a dataset that includes 1785 quartz optically stimulated luminescence ages and 1038 K-feldspar post-infrared infrared stimulated luminescence ages from 128 loess-paleosol sequences located in different regions of Asia. We generate 38 high-resolution age-depth models of loess records based on the provided datasets. We provide data on 12,365 grain size records, 14,964 magnetic susceptibility records, 2204 CaCO3 content records, and 3326 color reflection records. This dataset contains the most detailed and accurate chronologies and proxy index data for loess records in Asia yet published. It provides fundamental data for understanding the spatial-temporal variations in loess depositional processes and climatic changes across the continent during the mid-late Quaternary.
  •  
9.
  • Li, Guoshuai, et al. (författare)
  • Site selection of desert solar farms based on heterogeneous sand flux
  • 2024
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Site selection for building solar farms in deserts is crucial and must consider the dune threats associated with sand flux, such as sand burial and dust contamination. Understanding changes in sand flux can optimize the site selection of desert solar farms. Here we use the ERA5-Land hourly wind data with 0.1° × 0.1° resolution to calculate the yearly sand flux from 1950 to 2022. The mean of sand flux is used to score the suitability of global deserts for building solar farms. We find that the majority of global deserts have low flux potential (≤ 40 m3 m-1 y-1) and resultant flux potential (≤ 2.0 m3 m-1 y-1) for the period 1950–2022. The scoring result demonstrates that global deserts have obvious patchy distribution of site suitability for building solar farms. Our study contributes to optimizing the site selection of desert solar farms, which aligns with the United Nations sustainability development goals for achieving affordable and clean energy target by 2030.
  •  
10.
  • Li, Ning, et al. (författare)
  • Vegetation greening amplifies shallow soil temperature warming on the Tibetan Plateau
  • 2024
  • Ingår i: NPJ CLIMATE AND ATMOSPHERIC SCIENCE. - 2397-3722. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetation changes are expected to alter soil thermal regimes, consequently modifying climate feedbacks related to frozen ground thawing and carbon cycling in cold regions. The Tibetan Plateau (TP) contains diverse alpine ecosystems and the largest area of frozen ground in low-mid latitude regions. Evidence suggests ongoing vegetation greening and permafrost degradation during the past several decades on the TP. However, the effect of vegetation changes on soil thermal regimes on the TP is not well understood. Here, we quantify the response of shallow soil temperature change to vegetation greening on the TP using remote-sensing data, in-situ observations, and physics-based modelling. Our results show that over the past 20 years, vegetation greening on the TP was accompanied a notable decrease in the area of bare land by approximately 0.7% (5000 km(2)). Annual mean soil temperature showed a significant warming trend of 0.57 degrees C decade(-1) (p < 0.05) during the period 1983-2019, exceeding the warming rate of surface air temperature. Changes in vegetation resulted in a warming effect on annual shallow soil temperature of 0.15 +/- 0.33 degrees C across the TP during the period 2000-2019. The warming effect varies with frozen soil types: 0.24 +/- 0.48 degrees C in permafrost, 0.18 +/- 0.36 degrees C in seasonally frozen ground, and 0.11 +/- 0.32 degrees C in unfrozen ground. The net warming effect was caused by a decrease in albedo and increase in radiation penetrating the canopy, outweighing the cooling effect related to a limited increase in evapotranspiration.
  •  
11.
  • Lin, Fangyuan, 1996-, et al. (författare)
  • Seasonal to decadal variations of precipitation oxygen isotopes in northern China linked to the moisture source
  • 2024
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A precise characterization of moisture source and transport dynamics over the inland margins of monsoonal China is crucial for understanding the climatic significance of precipitation oxygen isotope (δ18Op) variability preserved in the regional proxy archives. Here, we use a general circulation model with an embedded water-tagging module to quantify the role of moisture dynamics on the seasonal to decadal variations of δ18Op in northern China. Our data indicate that during the non-monsoon season, the δ18Op variability is dominated by the temperature effect. Conversely, in the summer monsoon season, the moisture contributions from the low-latitude land areas (LLA), the Pacific Ocean (PO), and the North Indian Ocean (NIO) override the temperature effect and influence the summer δ18Op. Intensified upstream convection along the NIO moisture transport pathway results in a more negative summer δ18Op compared to moisture transported from the PO and LLA regions. Our analysis shows a decadal shift in summer δ18Op around the mid-1980s, marking changes in the relative contribution of oceanic moisture from PO and NIO in response to changes in the atmospheric circulation patterns influenced by the Pacific Decadal Oscillation. We suggest that such decadal-scale δ18Op variability can be recorded in the natural archives from the region, which can provide valuable insights into understanding past climate variability.
  •  
12.
  • Liu, Yubo, et al. (författare)
  • The disproportionate impact of enhanced evaporation from melting arctic sea ice on cold-season land precipitation trends
  • 2024
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Diminishing Arctic sea ice has led to enhanced evaporation from the Arctic marginal seas (AMS), which is expected to alter precipitation over land. In this work, AMS evaporation is numerically tracked to quantify its contribution to cold-season (October–March) precipitation over land in the Northern Hemisphere during 1980–2021. Results show a significant 32% increase in AMS moisture contribution to land precipitation, corresponding to a 16% increase per million square km loss of sea ice area. Especially over the high-latitude land, despite the fractional contribution of AMS to precipitation being relatively low (8%), the augmented AMS evaporation contributed disproportionately (42%) to the observed upward trend in precipitation. Notably, northern East Siberia exhibited a substantial rise in both the amount and fraction of extreme snowfall sourced from the AMS. Our findings underscore the importance of the progressively ice-free Arctic as an important contributor to the escalating levels of cold-season precipitation and snowfall over northern high-latitude land.
  •  
13.
  • Liu, Yubo, et al. (författare)
  • The disproportionate impact of enhanced evaporation from melting arctic sea ice on cold-season land precipitation trends
  • 2024
  • Ingår i: NPJ CLIMATE AND ATMOSPHERIC SCIENCE. - 2397-3722. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Diminishing Arctic sea ice has led to enhanced evaporation from the Arctic marginal seas (AMS), which is expected to alter precipitation over land. In this work, AMS evaporation is numerically tracked to quantify its contribution to cold-season (October-March) precipitation over land in the Northern Hemisphere during 1980-2021. Results show a significant 32% increase in AMS moisture contribution to land precipitation, corresponding to a 16% increase per million square km loss of sea ice area. Especially over the high-latitude land, despite the fractional contribution of AMS to precipitation being relatively low (8%), the augmented AMS evaporation contributed disproportionately (42%) to the observed upward trend in precipitation. Notably, northern East Siberia exhibited a substantial rise in both the amount and fraction of extreme snowfall sourced from the AMS. Our findings underscore the importance of the progressively ice-free Arctic as an important contributor to the escalating levels of cold-season precipitation and snowfall over northern high-latitude land.
  •  
14.
  • Luo, Haolin, et al. (författare)
  • Future changes in South Asian summer monsoon circulation under global warming: role of the Tibetan Plateau latent heating
  • 2024
  • Ingår i: NPJ CLIMATE AND ATMOSPHERIC SCIENCE. - 2397-3722. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The South Asian summer monsoon (SASM) is a significant monsoon system that exerts a profound impact on climate and human livelihoods. According to 38 models from the Coupled Model Intercomparison Project Phase 6, the SASM circulation is projected to weaken significantly under global warming as seen in the weakened low-level westerly wind over the northern tropical Indian Ocean; however, the associated climate dynamics is still under debate. Here, we identify that the weakened low-level westerly wind is closely related to the enhanced latent heating over the Tibetan Plateau (TP), which corresponds with increased summer precipitation in the future. The intensified TP latent heating triggers an anomalous meridional circulation with ascending motions over the plateau and descending motions to the south, leading to an anomalous low-level anticyclone over the northern tropical Indian Ocean. This anticyclone greatly weakens the prevailing low-level westerlies of the SASM through easterly anomalies at the anticyclone's southern flank. Moisture budget analysis further reveals that increased atmospheric water vapor, rather than the vertical dynamic component, makes the largest contribution to the increased precipitation over the TP. This result confirms that the enhanced TP latent heating is a driver of atmospheric circulation change and contributes to weakening the SASM circulation.
  •  
15.
  • Martinsson, Bengt G., et al. (författare)
  • Formation and composition of the UTLS aerosol
  • 2019
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratospheric aerosol has long been seen as a pure mixture of sulfuric acid and water. Recent measurements, however, found a considerable carbonaceous fraction extending at least 8 km into the stratosphere. This fraction affects the aerosol optical depth (AOD) and the radiative properties, and hence the radiative forcing and climate impact of the stratospheric aerosol. Here we present an investigation based on a decade (2005–2014) of airborne aerosol sampling at 9–12 km altitude in the tropics and the northern hemisphere (NH) aboard the IAGOS-CARIBIC passenger aircraft. We find that the chemical composition of tropospheric aerosol in the tropics differs markedly from that at NH midlatitudes, and, that the carbonaceous stratospheric aerosol is oxygen-poor compared to the tropospheric aerosol. Furthermore, the carbonaceous and sulfurous components of the aerosol in the lowermost stratosphere (LMS) show strong increases in concentration connected with springtime subsidence from overlying stratospheric layers. The LMS concentrations significantly exceed those in the troposphere, thus clearly indicating a stratospheric production of not only the well-established sulfurous aerosol, but also a considerable but less understood carbonaceous component.
  •  
16.
  • Salvador, Christian Mark, 1989, et al. (författare)
  • Extensive urban air pollution footprint evidenced by submicron organic aerosols molecular composition
  • 2022
  • Ingår i: Npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Transport and transformation of urban air pollutants are among the major factors driving the changes in the atmospheric composition in the downwind rural/remote areas of a megacity. Here, we assess the impacts of urban air pollution in a subtropical forest through characterization of the organic markers in submicron aerosol particles. The aerosol samples were collected and analyzed using TD-PTR-ToF-MS, where 163 ions were detected. The concentration of these extracted ions accounts for 83% of the mass of submicron organic aerosols, which are accordingly characterized by a median formula of C7H10O2. Molecular speciation indicates that urban and biomass burning pollution contributed substantially to the budget of organic aerosols, which were enhanced particularly by the liquid water content and acidity of the aerosols. Our results evidence that the footprint of urban air pollution was extended to its downwind forested areas and caused changes in the concentration and composition of submicron aerosols.
  •  
17.
  • Sandu, Irina, et al. (författare)
  • Impacts of orography on large-scale atmospheric circulation
  • 2019
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Some of the largest and most persistent circulation errors in global numerical weather prediction and climate models are attributable to the inadequate representation of the impacts of orography on the atmospheric flow. Existing parametrization approaches attempting to account for unresolved orographic processes, such as turbulent form drag, low-level flow blocking or mountain waves, have been successful to some extent. They capture the basic impacts of the unresolved orography on atmospheric circulation in a qualitatively correct way and have led to significant progress in both numerical weather prediction and climate modelling. These approaches, however, have apparent limitations and inadequacies due to poor observational evidence, insufficient fundamental knowledge and an ambiguous separation between resolved and unresolved orographic scales and between different orographic processes. Numerical weather prediction and climate modelling has advanced to a stage where these inadequacies have become critical and hamper progress by limiting predictive skill on a wide range of spatial and temporal scales. More physically based approaches are needed to quantify the relative importance of apparently disparate orographic processes and to account for their combined effects in a rational and accurate way in numerical models. We argue that, thanks to recent advances, significant progress can be made by combining theoretical approaches with observations, inverse modelling techniques and high-resolution and idealized numerical simulations.
  •  
18.
  • Song, Lei, et al. (författare)
  • Assessing hydrothermal changes in the upper Yellow River Basin amidst permafrost degradation
  • 2024
  • Ingår i: NPJ CLIMATE AND ATMOSPHERIC SCIENCE. - 2397-3722. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the 20th century, the temperature on the Qinghai-Tibetan Plateau (QTP) has increased at a rate of 2-3 times that of global warming. Consequently, the soil temperature and active layer thickness have also increased, which have directly caused severe degradation of the frozen ground on the QTP. Using a hydrological model driven by climate and vegetation forcing, the spatial and temporal changes in the hydrothermal characteristics of the Upper Yellow River Basin (UYRB) from 1960 to 2019 were modeled and the mechanism of the changes was analyzed. During the past six decades, the soil temperature in the UYRB exhibited an increasing trend. The degradation of permafrost in the UYRB was accompanied by thickening of the active layer, a reduction of the maximum depth of the seasonal frost penetration, and continuous extension of the basin thawing time. This degradation was also associated with the increase in the soil moisture content and decrease in the soil ice content, resulting in degradation of the permafrost area by one-tenth of the total area in the UYRB. The reduction of the permafrost area and the thickening of the active layer can profoundly impact hydrological processes and ecosystems. These findings play a critical role in designing efficient strategies to manage and protect frozen ground and serve as a valuable reference for understanding the consequences of frozen ground degradation globally.
  •  
19.
  • Tang, Jing, et al. (författare)
  • High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong, ongoing high-latitude warming is causing changes to vegetation composition and plant productivity, modifying plant emissions of biogenic volatile organic compounds (BVOCs). In the sparsely populated high latitudes with clean background air, climate feedback resulting from BVOCs as precursors of atmospheric aerosols could be more important than elsewhere on the globe. Here, we quantitatively assess changes in vegetation composition, BVOC emissions, and secondary organic aerosol (SOA) formation under different climate scenarios. We show that warming-induced vegetation changes largely determine the spatial patterns of future BVOC impacts on SOA. The northward advances of boreal needle-leaved woody species result in increased SOA optical depth by up to 41%, causing cooling feedback. However, areas with temperate broad-leaved trees replacing boreal needle-leaved trees likely experience a large decline in monoterpene emissions and SOA formation, causing warming feedback. We highlight the necessity of considering warming-induced vegetation shifts when assessing land radiative feedback on climate following the BVOC-SOA pathway.
  •  
20.
  • Thandlam, Venugopal, Mr. 1987- (författare)
  • A sea-level monopole in the equatorial Indian Ocean
  • 2020
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we show the relationship between sea-level anomalies (SLA) and upper-ocean parameters in the Equatorial Indian Ocean (EIO). This work also focuses on the variability of SLA obtained from satellite altimeter data in different spatial and temporal scales and its relationship with computed ocean heat content (OHC), dynamic height (DH), and thermocline depth (20 °C isotherm: D20) during 1993–2015. SLA showed low Pearson’s correlation coefficient (CC) with upper-ocean parameters over central EIO resembling a “Monopole” pattern. The Array for Real-time Geostrophic Oceanography (ARGO) in situ profile data in the central EIO also confirmed this. SLA over this monopole showed low correlations with all parameters as compared with eastern and western EIO. These findings show a clear signature of a persisting sea-level monopole in the central EIO. Oscillating SLA over western and eastern EIO during summer and winter monsoon months is found to be responsible for locking this monopole in the central EIO. Both SLA and OHC increased in EIO during 2006–2015 compared with 1993–2005. The month of January showed different east–west trends at different times. This trend during 1993–2015 is neutral, but it shifted from negative during 1993–2005 to positive during 2006–2015.
  •  
21.
  • Wang, Huan, et al. (författare)
  • Thermodynamic effect dictates influence of the Atlantic Multidecadal Oscillation on Eurasia winter temperature
  • 2024
  • Ingår i: NPJ CLIMATE AND ATMOSPHERIC SCIENCE. - 2397-3722. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atlantic Multidecadal Oscillation (AMO) has garnered attention for its important role in shaping surface air temperature (SAT) patterns over Eurasia. While Eurasian winter SAT was traditionally attributed to changes in large-scale atmospheric circulations associated with the AMO, a careful examination of the latest unforced CMIP6 simulations in this study unveils a significant contribution of the AMO's thermodynamic effects. Specifically, the heat released from the North Atlantic Ocean and transported to northern Eurasia through westerlies takes precedence over the effect of dynamic Rossby waves, resulting in warm (cold) phases during positive (negative) AMO cycles, along with increased (decreased) warm extremes and reduced (enhanced) cold extremes. This study contributes to an improved understanding of the dominating mechanism of the AMO's impact on Eurasian SAT.
  •  
22.
  • Wang, Sifan, et al. (författare)
  • Fire carbon emissions over Equatorial Asia reduced by shortened dry seasons
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire carbon emissions over Equatorial Asia (EQAS) play a critical role in the global carbon cycle. Most regional fire emissions (89.0%) occur in the dry season, but how changes in the dry-season length affect the fire emissions remains poorly understood. Here we show that, the length of the EQAS dry season has decreased significantly during 1979–2021, and the delayed dry season onset (5.4 ± 1.6 (± one standard error) days decade−1) due to increased precipitation (36.4 ± 9.1 mm decade−1) in the early dry season is the main reason. The dry season length is strongly correlated with the length of the fire season. Increased precipitation during the early dry season led to a significant reduction (May: −0.7 ± 0.4 Tg C decade−1; August: −12.9 ± 6.7 Tg C decade−1) in fire carbon emissions during the early and peak fire season. Climate models from the Coupled Model Intercomparison Project Phase 6 project a continued decline in future dry season length in EQAS under medium and high-emission scenarios, implying further reductions in fire carbon emissions.
  •  
23.
  • You, Q. L., et al. (författare)
  • Recent frontiers of climate changes in East Asia at global warming of 1.5 degrees C and 2 degrees C
  • 2022
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 degrees C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required.
  •  
24.
  • Zhang, J. S., et al. (författare)
  • Marked impacts of transient conditions on potential secondary organic aerosol production during rapid oxidation of gasoline exhausts
  • 2023
  • Ingår i: npj Climate and Atmospheric Science. - 2397-3722. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Vehicle emission is a major source of atmospheric secondary organic aerosols (SOA). Driving condition is a critical influencing factor for vehicular SOA production, but few studies have revealed the dependence on rapid-changing real-world driving conditions. Here, a fast-response oxidation flow reactor system is developed and deployed to quantify the SOA formation potential under transient driving conditions. Results show that the SOA production factor varies by orders of magnitude, e.g., 20-1500 mg kg-fuel(-1) and 12-155 mg kg-fuel(-1) for China V and China VI vehicles, respectively. High speed, acceleration, and deceleration are found to considerably promote SOA production due to higher organic gaseous emissions caused by unburned fuel emission or incomplete combustion. In addition, China VI vehicles significantly reduce SOA formation potential, yield, and acceleration and deceleration peaks. Our study provides experimental insight and parameterization into vehicular SOA formation under transient driving conditions, which would benefit high time-resolved SOA simulations in the urban atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy