SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2692 4560 OR L773:2766 8541 "

Sökning: L773:2692 4560 OR L773:2766 8541

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hu, Tianyu, et al. (författare)
  • Steric hindrance induced low exciton binding energy enables low-driving-force organic solar cells
  • 2024
  • Ingår i: Aggregate. - 2692-4560 .- 2766-8541. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Exciton binding energy (Eb) has been regarded as a critical parameter in charge separation during photovoltaic conversion. Minimizing the Eb of the photovoltaic materials can facilitate the exciton dissociation in low-driving force organic solar cells (OSCs) and thus improve the power conversion efficiency (PCE); nevertheless, diminishing the Eb with deliberate design principles remains a significant challenge. Herein, bulky side chain as steric hindrance structure was inserted into Y-series acceptors to minimize the Eb by modulating the intra- and intermolecular interaction. Theoretical and experimental results indicate that steric hindrance-induced optimal intra- and intermolecular interaction can enhance molecular polarizability, promote electronic orbital overlap between molecules, and facilitate delocalized charge transfer pathways, thereby resulting in a low Eb. The conspicuously reduced Eb obtained in Y-ChC5 with pinpoint steric hindrance modulation can minimize the detrimental effects on exciton dissociation in low-driving-force OSCs, achieving a remarkable PCE of 19.1% with over 95% internal quantum efficiency. Our study provides a new molecular design rationale to reduce the Eb.
  •  
2.
  • Ma, Ruijie, et al. (författare)
  • All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives
  • 2022
  • Ingår i: Aggregate. - : Wiley. - 2692-4560 .- 2766-8541. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Considering the robust and stable nature of the active layers, advancing the power conversion efficiency (PCE) has long been the priority for all-polymer solar cells (all-PSCs). Despite the recent surge of PCE, the photovoltaic parameters of the state-of-the-art all-PSC still lag those of the polymer:small molecule-based devices. To compete with the counterparts, judicious modulation of the morphology and thus the device electrical properties are needed. It is difficult to improve all the parameters concurrently for the all-PSCs with advanced efficiency, and one increase is typically accompanied by the drop of the other(s). In this work, with the aids of the solvent additive (1-chloronaphthalene) and the n-type polymer additive (N2200), we can fine-tune the morphology of the active layer and demonstrate a 16.04% efficient all-PSC based on the PM6:PY-IT active layer. The grazing incidence wide-angle X-ray scattering measurements show that the shape of the crystallites can be altered, and the reshaped crystallites lead to enhanced and more balanced charge transport, reduced recombination, and suppressed energy loss, which lead to concurrently improved and device efficiency and stability.
  •  
3.
  • Wang, Jingxiang, et al. (författare)
  • Highly efficient organic light-emitting diodes and light-emitting electrochemical cells employing multiresonant thermally activated delayed fluorescent emitters with bulky donor or acceptor peripheral groups
  • 2024
  • Ingår i: Aggregate. - : John Wiley & Sons. - 2766-8541 .- 2692-4560.
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiresonant thermally activated delayed fluorescence (MR-TADF) emitters have been the focus of extensive design efforts as they are recognized to show bright, narrowband emission, which makes them very appealing for display applications. However, the planar geometry and relatively large singlet–triplet energy gap lead to, respectively, severe aggregation-caused quenching (ACQ) and slow reverse intersystem crossing (RISC). Here, a design strategy is proposed to address both issues. Two MR-TADF emitters triphenylphosphine oxide (TPPO)-tBu-DiKTa and triphenylamine (TPA)-tBu-DiKTa have been synthesized. Twisted ortho-substituted groups help increase the intermolecular distance and largely suppress the ACQ. In addition, the contributions from intermolecular charge transfer states in the case of TPA-tBu-DiKTa help to accelerate RISC. The organic light-emitting diodes (OLEDs) with TPPO-tBu-DiKTa and TPA-tBu-DiKTa exhibit high maximum external quantum efficiencies (EQEmax) of 24.4% and 31.0%, respectively. Notably, the device with 25 wt% TPA-tBu-DiKTa showed both high EQEmax of 28.0% and reduced efficiency roll-off (19.9% EQE at 1000 cd m−2) compared to the device with 5 wt% emitter (31.0% EQEmax and 11.0% EQE at 1000 cd m−2). The new emitters were also introduced into single-layer light-emitting electrochemical cells (LECs), equipped with air-stable electrodes. The LEC containing TPA-tBu-DiKTa dispersed at 0.5 wt% in a matrix comprising a mobility-balanced blend-host and an ionic liquid electrolyte delivered blue luminance with an EQEmax of 2.6% at 425 cd m−2. The high efficiencies of the OLEDs and LECs with TPA-tBu-DiKTa illustrate the potential for improving device performance when the DiKTa core is decorated with twisted bulky donors.
  •  
4.
  • Liu, Wei, et al. (författare)
  • Manipulating molecular aggregation and crystalline behavior of A-DAD-A type acceptors by side chain engineering in organic solar cells
  • 2022
  • Ingår i: Aggregate. - : Wiley. - 2692-4560. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl chains engineering plays an important role in photovoltaic materials for organic solar cells. Herein, three A-DAD-A (acceptor-donor-acceptor-donor-acceptor) type acceptors named Y6, Y6-C4, and Y6-C5 with different branching position on the pyrrole motif are discussed and the relationship between molecular aggregation, crystalline, and device performance are systematically investigated. The distance between the branching position and the main backbone affects their optical absorption and energy levels. Y6-C4 and Y6-C5 with the branching position at the fourth and fifth carbon of the alkyl chain show blue-shifted absorption and increased electrochemical bandgaps, compared with Y6 with the branching position at the second carbon of the alkyl side chain. In addition, this distance influences the molecular aggregation and crystalline behavior of the donor/acceptor blends. Compared with Y6-C4, Y6-C5 possesses a stronger crystalline and aggregate ability in the blends with a lower non-radiative energy loss, which results in a higher open circuit voltage (V-oc) of 0.88 V. Finally, Y6-C5-based binary device achieved a high power conversion efficiency up to 16.73% with afill factor (FF) of 0.78. These results demonstrate that the side chain engineering is an effective strategy for tuning the molecular aggregation and crystalline to improve photovoltaic performance of the A-DAD-A type acceptors.
  •  
5.
  • Liu, Wei, et al. (författare)
  • Pickering multiphase materials using plant-based cellulosic micro/nanoparticles
  • 2024
  • Ingår i: Aggregate. - 2692-4560.
  • Forskningsöversikt (refereegranskat)abstract
    • Pickering multiphase systems stabilized by solid particles have recently attracted increasing attention due to their excellent stability. Among various solid stabilizers, natural and renewable cellulosic micro/nanoparticles that are derived from agricultural and forestry sources have become promising candidates for Pickering stabilization due to their unique morphological features and tunable surface properties. In this review, recent progress on forming and stabilizing Pickering multiphase systems using cellulosic colloidal particles is summarized, including the physicochemical factors affecting their assembly at the interfaces and the preparation methods suitable for producing Pickering emulsions. In addition, relevant application prospects of corresponding Pickering multiphase materials are outlined. Finally, current challenges and future perspectives of such renewable Pickering multiphase systems are presented. This review aims to encourage the utilization of cellulosic micro/nanoparticles as key components in the development of Pickering systems, leading to enhanced performance and unique functionalities. image
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy