SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:8755 1209 OR L773:1944 9208 "

Sökning: L773:8755 1209 OR L773:1944 9208

  • Resultat 1-25 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • AghaKouchak, Amir, et al. (författare)
  • Anthropogenic Drought : Definition, Challenges, and Opportunities
  • 2021
  • Ingår i: Reviews of geophysics. - : John Wiley & Sons. - 8755-1209 .- 1944-9208. ; 59:2
  • Forskningsöversikt (refereegranskat)abstract
    • Traditional, mainstream definitions of drought describe it as deficit in water-related variables or water-dependent activities (e.g., precipitation, soil moisture, surface and groundwater storage, and irrigation) due to natural variabilities that are out of the control of local decision-makers. Here, we argue that within coupled human-water systems, drought must be defined and understood as a process as opposed to a product to help better frame and describe the complex and interrelated dynamics of both natural and human-induced changes that define anthropogenic drought as a compound multidimensional and multiscale phenomenon, governed by the combination of natural water variability, climate change, human decisions and activities, and altered micro-climate conditions due to changes in land and water management. This definition considers the full spectrum of dynamic feedbacks and processes (e.g., land-atmosphere interactions and water and energy balance) within human-nature systems that drive the development of anthropogenic drought. This process magnifies the water supply demand gap and can lead to water bankruptcy, which will become more rampant around the globe in the coming decades due to continuously growing water demands under compounding effects of climate change and global environmental degradation. This challenge has de facto implications for both short-term and long-term water resources planning and management, water governance, and policymaking. Herein, after a brief overview of the anthropogenic drought concept and its examples, we discuss existing research gaps and opportunities for better understanding, modeling, and management of this phenomenon.
  •  
2.
  • Alfvén, Hannes (författare)
  • Electric currents in cosmic plasmas
  • 1977
  • Ingår i: Reviews of geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 15:3, s. 271-284
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the beginning of the century, physics has been dualistic in the sense that some phenomena are described by a field concept and others by a particle concept. This dualism is essential also in the physics of cosmic plasmas: some phenomena should be described by a magnetic field formalism, and others by an electric current formalism. During the first period of evolution of cosmic plasma physics the magnetic field aspect has dominated, and a fairly exhaustive description has been given of those phenomena, like the propagation of waves, which can be described in this way. We have now entered a second period, which is dominated by a systematic exploration of the particle (or current) aspect. A survey is given of a number of phenomena which can be understood only from the particle aspect. These include the formation of electric double layers, the origin of ‘explosive’ events like magnetic substorms and solar flares, and further, the transfer of energy from one region to another. A useful method of exploring many of these phenomena is to draw the electric circuit in which the current flows and to study its properties. A number of simple circuits are analyzed in this way.
  •  
3.
  •  
4.
  • Anav, Alessandro, et al. (författare)
  • Spatiotemporal patterns of terrestrial gross primary production : A review
  • 2015
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 53:3, s. 785-818
  • Forskningsöversikt (refereegranskat)abstract
    • Great advances have been made in the last decade in quantifying and understanding the spatiotemporal patterns of terrestrial gross primary production (GPP) with ground, atmospheric, and space observations. However, although global GPP estimates exist, each data set relies upon assumptions and none of the available data are based only on measurements. Consequently, there is no consensus on the global total GPP and large uncertainties exist in its benchmarking. The objective of this review is to assess how the different available data sets predict the spatiotemporal patterns of GPP, identify the differences among data sets, and highlight the main advantages/disadvantages of each data set. We compare GPP estimates for the historical period (1990-2009) from two observation-based data sets (Model Tree Ensemble and Moderate Resolution Imaging Spectroradiometer) to coupled carbon-climate models and terrestrial carbon cycle models from the Fifth Climate Model Intercomparison Project and TRENDY projects and to a new hybrid data set (CARBONES). Results show a large range in the mean global GPP estimates. The different data sets broadly agree on GPP seasonal cycle in terms of phasing, while there is still discrepancy on the amplitude. For interannual variability (IAV) and trends, there is a clear separation between the observation-based data that show little IAV and trend, while the process-based models have large GPP variability and significant trends. These results suggest that there is an urgent need to improve observation-based data sets and develop carbon cycle modeling with processes that are currently treated either very simplistically to correctly estimate present GPP and better quantify the future uptake of carbon dioxide by the world's vegetation.
  •  
5.
  • Bellouin, N., et al. (författare)
  • Bounding Global Aerosol Radiative Forcing of Climate Change
  • 2020
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 58:1
  • Forskningsöversikt (refereegranskat)abstract
    • Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6Wm(-2), or -2.0 to -0.4Wm(-2) with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Plain Language Summary Human activities emit into the atmosphere small liquid and solid particles called aerosols. Those aerosols change the energy budget of the Earth and trigger climate changes, by scattering and absorbing solar and terrestrial radiation and playing important roles in the formation of cloud droplets and ice crystals. But because aerosols are much more varied in their chemical composition and much more heterogeneous in their spatial and temporal distributions than greenhouse gases, their perturbation to the energy budget, called radiative forcing, is much more uncertain. This review uses traceable and arguable lines of evidence, supported by aerosol studies published over the past 40 years, to quantify that uncertainty. It finds that there are two chances out of three that aerosols from human activities have increased scattering and absorption of solar radiation by 14% to 29% and cloud droplet number concentration by 5 to 17% in the period 2005-2015 compared to the year 1850. Those increases exert a radiative forcing that offsets between a fifth and a half of the radiative forcing by greenhouse gases. The degree to which human activities affect natural aerosol levels, and the response of clouds, and especially ice clouds, to aerosol perturbations remain particularly uncertain.
  •  
6.
  • Bhardwaj, Anshuman, et al. (författare)
  • Are Slope Streaks Indicative of Global‐Scale Aqueous Processes on Contemporary Mars?
  • 2019
  • Ingår i: Reviews of geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 57:1, s. 48-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Slope streaks are prevalent and intriguing dark albedo surface features on contemporary Mars. Slope streaks are readily observed in the equatorial and subequatorial dusty regolith regions with low thermal inertia. They gradually fade over decadal timescales. The proposed mechanisms for their formation vary widely based on several physicochemical and geomorphological explanations. The scientific community is divided in proposing both dry and wet mechanisms for the formation of slope streaks. Here we perform a systematic evaluation of the literature for these wet and dry mechanisms. We discuss the probable constraints on the various proposed mechanisms and provide perspectives on the plausible process driving global‐scale slope streak formation on contemporary Mars. Although per our understanding, a thorough consideration of the global distribution of slope streaks, their morphology and topography, flow characteristics, physicochemical and atmospheric coincidences, and terrestrial analogies weighs more in favor of several wet mechanisms, we acknowledge that such wet mechanisms cannot explain all the reported morphological and terrain variations of slope streaks. Thus, we suggest that explanations considering both dry and wet processes can more holistically describe all the observed morphological variations among slope streaks. We further acknowledge the constraints on the resolutions of remote sensing data and on our understanding of the Martian mineralogy, climate, and atmosphere and recommend continuous investigations in this direction using future remote sensing acquisitions and simulations. In this regard, finding more wet and dry terrestrial analogs for Martian slope streaks and studying them at high spatiotemporal resolutions can greatly improve our understanding.
  •  
7.
  • Björklund, J., et al. (författare)
  • Scientific Merits and Analytical Challenges of Tree-Ring Densitometry
  • 2019
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 57:4, s. 1224-1264
  • Forskningsöversikt (refereegranskat)abstract
    • X-ray microdensitometry on annually resolved tree-ring samples has gained an exceptional position in last-millennium paleoclimatology through the maximum latewood density (MXD) parameter, but also increasingly through other density parameters. For 50 years, X-ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light-based techniques are becoming increasingly popular, and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resolution. Here we review the current understanding and merits of wood density for tree-ring research, associated microdensitometric techniques, and analytical measurement challenges. The review is further complemented with a careful comparison of new measurements derived at 17 laboratories, using several different techniques. The new experiment allowed us to corroborate and refresh long-standing wisdom but also provide new insights. Key outcomes include (i) a demonstration of the need for mass/volume-based recalibration to accurately estimate average ring density; (ii) a substantiation of systematic differences in MXD measurements that cautions for great care when combining density data sets for climate reconstructions; and (iii) insights into the relevance of analytical measurement resolution in signals derived from tree-ring density data. Finally, we provide recommendations expected to facilitate futureinter-comparability and interpretations for global change research.
  •  
8.
  • Björklund, Jesper, 1979, et al. (författare)
  • Scientific Merits and Analytical Challenges ofTree-Ring Densitometry
  • 2019
  • Ingår i: Reviews of Geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 57:4, s. 1224-1264
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray microdensitometry on annually resolved tree-ring samples has gained an exceptional position in last-millennium paleoclimatology through the maximum latewood density (MXD) parameter, but also increasingly through other density parameters. For 50 years, X-ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light-based techniques are becoming increasingly popular, and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resolution. Here we review the current understanding and merits of wood density for tree-ring research, associated microdensitometric techniques, and analytical measurement challenges. The review is further complemented with a careful comparison of new measurements derived at 17 laboratories, using several different techniques. The new experiment allowed us to corroborate and refresh "long-standing wisdom" but also provide new insights. Key outcomes include (i) a demonstration of the need for mass/volume-based recalibration to accurately estimate average ring density; (ii) a substantiation of systematic differences in MXD measurements that cautions for great care when combining density data sets for climate reconstructions; and (iii) insights into the relevance of analytical measurement resolution in signals derived from tree-ring density data. Finally, we provide recommendations expected to facilitate futureinter-comparability and interpretations for global change research.
  •  
9.
  • Boano, F., et al. (författare)
  • Hyporheic flow and transport processes : Mechanisms, models, and biogeochemical implications
  • 2014
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 52:4, s. 603-679
  • Forskningsöversikt (refereegranskat)abstract
    • Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.
  •  
10.
  • Christiansen, Bo, et al. (författare)
  • Challenges and perspectives for large-scale temperature reconstructions of the past two millennia
  • 2017
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 55:1, s. 40-96
  • Forskningsöversikt (refereegranskat)abstract
    • Knowledge of the temperature variability during the last one to two millennia is important for providing a perspective to present-day climate excursions, for assessing the sensitivity of the climate to different forcings, and for providing a test bed for climate models. Since systematic instrumental temperature records only extend back to the nineteenth century, such knowledge mainly relies on climate-sensitive proxy data. Here we critically assess some of the many challenges related to large-scale multiproxy temperature reconstructions. We begin with a review of available large-scale temperature reconstructions, focusing on the differences in low-frequency variability and the response to natural forcings such as major volcanic eruptions and changes in total solar irradiance. Then, we discuss different proxy selection strategies, review previously used reconstruction methods, and discuss their ability to reconstruct the amplitude of the low-frequency variability. To shed additional light on the challenges of large-scale reconstructions, we investigate the spatial and temporal correlation structures in the observed temperature field and discuss the implications of these correlation structures regarding the required number and positions of proxies. We demonstrate how the unavoidable uncertainty related to noisy proxies will show up as bias and variance in the reconstruction and that the partition between these forms of errors depends on the reconstruction method. Pseudo-proxy experiments are conducted to further discuss the influence of noise and the requirements regarding the geographical location and number of proxies necessary for reliably reconstructing the low-frequency variability. We conclude with recommendations for future large-scale temperature reconstructions.
  •  
11.
  • D'Odorico, Paolo, et al. (författare)
  • The global Food-Energy-Water Nexus
  • 2018
  • Ingår i: Reviews of geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 56:3, s. 456-531
  • Forskningsöversikt (refereegranskat)abstract
    • Water availability is a major factor constraining humanity's ability to meet the future food and energy needs of a growing and increasingly affluent human population. Water plays an important role in the production of energy, including renewable energy sources and the extraction of unconventional fossil fuels that are expected to become important players in future energy security. The emergent competition for water between the food and energy systems is increasingly recognized in the concept of the "food-energy-water nexus." The nexus between food and water is made even more complex by the globalization of agriculture and rapid growth in food trade, which results in a massive virtual transfer of water among regions and plays an important role in the food and water security of some regions. This review explores multiple components of the food-energy-water nexus and highlights possible approaches that could be used to meet food and energy security with the limited renewable water resources of the planet. Despite clear tensions inherent in meeting the growing and changing demand for food and energy in the 21st century, the inherent linkages among food, water, and energy systems can offer an opportunity for synergistic strategies aimed at resilient food, water, and energy security, such as the circular economy.
  •  
12.
  • Fälthammar, Carl-Gunne (författare)
  • Problems related to macroscopic electric fields in the magnetosphere
  • 1977
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 15, s. 457-466
  • Tidskriftsartikel (refereegranskat)abstract
    • The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles. A particularly interesting feature of magnetospheric electric fields is that they can have several components along the geomagnetic field, as has recently been confirmed by observation. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic mirror effect, anomalous resistivity, the collisionless thermoelectric effect, and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data.
  •  
13.
  • Hannachi, Abdelwaheb, et al. (författare)
  • Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere
  • 2017
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 55:1, s. 199-234
  • Forskningsöversikt (refereegranskat)abstract
    • The extratropical atmosphere is characterized by robust circulations which have time scales longer than that associated with developing baroclinic systems but shorter than a season. Such low-frequency variability is governed to a large extent by nonlinear dynamics and, hence, is chaotic. A useful aspect of this low-frequency circulation is that it can often be described by just a few quasi-stationary regime states, broadly defined as recurrent or persistent large-scale structures, that exert a significant impact on the probability of experiencing extreme surface weather conditions. We review a variety of techniques for identifying circulation regimes from reanalysis and numerical model output. While various techniques often yield similar regime circulation patterns, they offer different perspectives on the regimes. The regimes themselves are manifest in planetary scale patterns. They affect the structure of synoptic scale patterns. Extratropical flow regimes have been identified in simplified atmospheric models and comprehensive coupled climate models and in reanalysis data sets. It is an ongoing challenge to accurately model these regime states, and high horizontal resolutions are often needed to accurately reproduce them. The regime paradigm helps to understand the response to external forcing on a variety of time scales, has been helpful in categorizing a large number of weather types and their effect on local conditions, and is useful in downscaling. Despite their usefulness, there is a debate on the nonequivocal and systematic existence of these nonlinear circulation regimes. We review our current understanding of the nonlinear and regime paradigms and suggest future research.
  •  
14.
  • Keller, Thomas (författare)
  • A Review of Geophysical Methods for Soil Structure Characterization
  • 2018
  • Ingår i: Reviews of Geophysics. - 8755-1209 .- 1944-9208. ; 56, s. 672-697
  • Forskningsöversikt (refereegranskat)abstract
    • The growing interest in the maintenance of favorable soil structure is largely motivated by its central role in plant growth, soil ecological functioning, and impacts on surface water and energy fluxes. Soil structure pertains to the spatial arrangement of voids and solid constituents, their aggregation, and mechanical state. As a fragile product of soil biological activity that includes invisible ingredients (mechanical and ecological states), soil structure is difficult to define rigorously, and measurements of relevant metrics often rely on core samples or on episodic point measurements. The presence of soil structure has not yet been explicitly incorporated in climate and Earth systems models, partially due to incomplete methodological means to characterize it at relevant scales and to parameterize it in spatially extensive models. We seek to review the potential of harnessing geophysical methods to fill the scale gap in characterization of soil structure directly (via impact of soil pores, transport, and mechanical properties on geophysical signals) or indirectly by measurement of surrogate variables (wetness and rates of drainage). We review basic aspects of soil structure and challenges of characterization across spatial and temporal scales and how geophysical methods could be used for the task. Additionally, we propose the use of geophysical models, inversion techniques, and combination of geophysical methods for extracting soil structure information at previously unexplored spatial and temporal scales.
  •  
15.
  • Koepke, Mark Elwood (författare)
  • Interrelated laboratory and space plasma experiments
  • 2008
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 46:3, s. RG3001-
  • Forskningsöversikt (refereegranskat)abstract
    • Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Advances for which laboratory experiments played an important role are reviewed here. How the interpretation of the space plasma data was influenced by one or more laboratory experiments is described. The space physics motivation of laboratory investigations and the scaling of laboratory plasma parameters to space plasma conditions are discussed. Examples demonstrating how laboratory experiments develop physical insight, validate or invalidate theoretical models, discover unexpected behavior, establish observational signatures, and pioneer diagnostic methods for the space community are presented. The various device configurations found in space-related laboratory investigations are outlined. A primary objective of this review is to articulate the overlapping scientific issues that are addressable in space and laboratory experiments. A secondary objective is to convey the wide range of laboratory and space plasma experiments involved in this interdisciplinary alliance. Over time the degree to which the interrelated experiments can be compared has increased, thanks to improved diagnostic techniques in space and closer attention to matching dimensionless space parameters in the laboratory.
  •  
16.
  • Koestel, Johannes (författare)
  • Pedotransfer Functions in Earth System Science: Challenges and Perspectives
  • 2017
  • Ingår i: Reviews of Geophysics. - 8755-1209 .- 1944-9208. ; 55, s. 1199-1256
  • Forskningsöversikt (refereegranskat)abstract
    • Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. In this paper, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.Plain Language Summary For the application of pedotransfer functions in current Earth system models, and specifically for the different fluxes of water, solutes, and gas between soil and atmosphere, subject of the land surface models, recent developments of knowledge are entered in a new generation of pedotransfer functions. Methods for development and evaluation of pedotransfer functions are described in this comprehensive review, and perspectives for future developments in different Earth system science disciplines are presented. Challenges are still present for the application in some extreme environments of the Earth. We argue that a comprehensive set of pedotransfer functions can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Even though methodological challenges are still present for extrapolation and scaling, as outlined, integration and validation in global-scale models is an achievable goal.
  •  
17.
  • Kutcherov, Vladimir G., et al. (författare)
  • DEEP-SEATED ABIOGENIC ORIGIN OF PETROLEUM : FROM GEOLOGICAL ASSESSMENT TO PHYSICAL THEORY
  • 2010
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 47, s. RG1001-
  • Forskningsöversikt (refereegranskat)abstract
    • The theory of the abyssal abiogenic origin of petroleum is a significant part of the modern scientific theories dealing with the formation of hydrocarbons. These theories include the identification of natural hydrocarbon systems, the physical processes leading to their terrestrial concentration, and the dynamic processes controlling the migration of that material into geological reservoirs of petroleum. The theory of the abyssal abiogenic origin of petroleum recognizes that natural gas and petroleum are primordial materials of deep origin which have migrated into the Earth's crust. Experimental results and geological investigations presented in this article convincingly confirm the main postulates of the theory and allow us to reexamine the structure, size, and locality distributions of the world's hydrocarbon reserves.
  •  
18.
  • Leyser, Thomas B., et al. (författare)
  • Powerful electromagnetic waves for active environmental research in geospace
  • 2009
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 47, s. RG1001-
  • Forskningsöversikt (refereegranskat)abstract
    • Powerful electromagnetic (EM) waves can exert well-defined influence on the atmosphere, ionosphere, and magnetosphere. These active EM interactions can provide spatiotemporal information on the near-Earth space environment (geospace). Objectives include remote monitoring and controlling of a wide range of parameters of geospace, controlling properties of the ionosphere and magnetosphere, as well as interaction with large-scale natural energy sources. In addition, applications such as mitigation of atmospheric pollutants and solar power satellites are discussed. Studies of EM wave interactions also contribute to the knowledge of anthropogenic effects in the geospace environment, such as the increasing use of EM radiation.
  •  
19.
  • Merz, Bruno, et al. (författare)
  • Impact Forecasting to Support Emergency Management of Natural Hazards
  • 2020
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 58:4
  • Forskningsöversikt (refereegranskat)abstract
    • Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe.
  •  
20.
  • Moore, John C., et al. (författare)
  • Semiempirical and process-based global sea level projections
  • 2013
  • Ingår i: Reviews of geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 51:3, s. 484-522
  • Forskningsöversikt (refereegranskat)abstract
    • We review the two main approaches to estimating sea level rise over the coming century: physically plausible models of reduced complexity that exploit statistical relationships between sea level and climate forcing, and more complex physics-based models of the separate elements of the sea level budget. Previously, estimates of future sea level rise from semiempirical models were considerably larger than those from process-based models. However, we show that the most recent estimates of sea level rise by 2100 using both methods have converged, but largely through increased contributions and uncertainties in process-based model estimates of ice sheets mass loss. Hence, we focus in this paper on ice sheet flow as this has the largest potential to contribute to sea level rise. Progress has been made in ice dynamics, ice stream flow, grounding line migration, and integration of ice sheet models with high-resolution climate models. Calving physics remains an important and difficult modeling issue. Mountain glaciers, numbering hundreds of thousands, must be modeled by extensive statistical extrapolation from a much smaller calibration data set. Rugged topography creates problems in process-based mass balance simulations forced by regional climate models with resolutions 10-100 times larger than the glaciers. Semiempirical models balance increasing numbers of parameters with the choice of noise model for the observations to avoid overfitting the highly autocorrelated sea level data. All models face difficulty in separating out non-climate-driven sea level rise (e.g., groundwater extraction) and long-term disequilibria in the present-day cryosphere-sea level system.
  •  
21.
  • Oren, Ram, et al. (författare)
  • EVAPOTRANSPIRATION: A PROCESS DRIVING MASS TRANSPORT AND ENERGY EXCHANGE IN THE SOIL-PLANT-ATMOSPHERE-CLIMATE SYSTEM
  • 2012
  • Ingår i: Reviews of Geophysics. - 8755-1209 .- 1944-9208. ; 50, s. 1-25
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (f(e)) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on f(e). The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the f(e) to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.
  •  
22.
  • Sherwood, S. C., et al. (författare)
  • An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence
  • 2020
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 58:4
  • Forskningsöversikt (refereegranskat)abstract
    • We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6-3.9 K for our Baseline calculation and remains within 2.3-4.5 K under the robustness tests; corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.
  •  
23.
  • Sun, Jielun, et al. (författare)
  • Review of wave-turbulence interactions in the stable atmospheric boundary layer
  • 2015
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 53:3, s. 956-993
  • Forskningsöversikt (refereegranskat)abstract
    • Flow in a stably stratified environment is characterized by anisotropic and intermittent turbulence and wavelike motions of varying amplitudes and periods. Understanding turbulence intermittency and wave-turbulence interactions in a stably stratified flow remains a challenging issue in geosciences including planetary atmospheres and oceans. The stable atmospheric boundary layer (SABL) commonly occurs when the ground surface is cooled by longwave radiation emission such as at night over land surfaces, or even daytime over snow and ice surfaces, and when warm air is advected over cold surfaces. Intermittent turbulence intensification in the SABL impacts human activities and weather variability, yet it cannot be generated in state-of-the-art numerical forecast models. This failure is mainly due to a lack of understanding of the physical mechanisms for seemingly random turbulence generation in a stably stratified flow, in which wave-turbulence interaction is a potential mechanism for turbulence intermittency. A workshop on wave-turbulence interactions in the SABL addressed the current understanding and challenges of wave-turbulence interactions and the role of wavelike motions in contributing to anisotropic and intermittent turbulence from the perspectives of theory, observations, and numerical parameterization. There have been a number of reviews on waves, and a few on turbulence in stably stratified flows, but not much on wave-turbulence interactions. This review focuses on the nocturnal SABL; however, the discussions here on intermittent turbulence and wave-turbulence interactions in stably stratified flows underscore important issues in stably stratified geophysical dynamics in general.
  •  
24.
  • Toledo-Redondo, S., et al. (författare)
  • Impacts of Ionospheric Ions on Magnetic Reconnection and Earth's Magnetosphere Dynamics
  • 2021
  • Ingår i: Reviews of geophysics. - : John Wiley & Sons. - 8755-1209 .- 1944-9208. ; 59:3
  • Forskningsöversikt (refereegranskat)abstract
    • Ionospheric ions (mainly H+, He+, and O+) escape from the ionosphere and populate the Earth's magnetosphere. Their thermal energies are usually low when they first escape the ionosphere, typically a few electron volt to tens of electron volt, but they are energized in their journey through the magnetosphere. The ionospheric population is variable, and it makes significant contributions to the magnetospheric mass density in key regions where magnetic reconnection is at work. Solar wind—magnetosphere coupling occurs primarily via magnetic reconnection, a key plasma process that enables transfer of mass and energy into the near-Earth space environment. Reconnection leads to the triggering of magnetospheric storms, auroras, energetic particle precipitation and a host of other magnetospheric phenomena. Several works in the last decades have attempted to statistically quantify the amount of ionospheric plasma supplied to the magnetosphere, including the two key regions where magnetic reconnection occurs: the dayside magnetopause and the magnetotail. Recent in situ observations by the Magnetospheric Multiscale spacecraft and associated modeling have advanced our current understanding of how ionospheric ions alter the magnetic reconnection process, including its onset and efficiency. This article compiles the current understanding of the ionospheric plasma supply to the magnetosphere. It reviews both the quantification of these sources and their effects on the process of magnetic reconnection. It also provides a global description of how the ionospheric ion contribution modifies the way the solar wind couples to the Earth's magnetosphere and how these ions modify the global dynamics of the near-Earth space environment.Plain Language SummaryAbove the neutral atmosphere, space is filled with charged particles, which are tied to the Earth's magnetic field. The particles come from two sources, the solar wind and the Earth's upper atmosphere. Most of the solar wind particles are deflected by the Earth´s magnetic field, but some can penetrate into near-Earth space. The ionized layer of the upper atmosphere is continuously ejecting particles into space, which have low energies and are difficult to measure. We investigate the relative importance of the two charged particle sources for the dynamics of plasma processes in near-Earth space. In particular, we consider the effects of these sources in magnetic reconnection. Magnetic reconnection allows initially separated plasma regions to become magnetically connected and mix, and converts magnetic energy to kinetic energy of charged particles. Magnetic reconnection is the main driver of geomagnetic activity in the near-Earth space, and is responsible for the release of energy that drives a variety of space weather effects. We highlight the fact that plasma from the ionized upper atmosphere contributes a significant part of the density in the key regions where magnetic reconnection is at work, and that this contribution is larger when the geomagnetic activity is high.
  •  
25.
  • Xin, P., et al. (författare)
  • Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry
  • 2022
  • Ingår i: Reviews of Geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 60:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Salt marshes are highly productive intertidal wetlands providing important ecological services for maintaining coastal biodiversity, buffering against oceanic storms, and acting as efficient carbon sinks. However, about half of these wetlands have been lost globally due to human activities and climate change. Inundated periodically by tidal water, salt marshes are subjected to strong surface water and groundwater interactions, which affect marsh plant growth and biogeochemical exchange with coastal water. This paper reviews the state of knowledge and current approaches to quantifying marsh surface water and groundwater interactions with a focus on porewater flow and associated soil conditions in connection with plant zonation as well as carbon, nutrients, and greenhouse gas fluxes. Porewater flow and solute transport in salt marshes are primarily driven by tides with moderate regulation by rainfall, evapotranspiration and sea level rise. Tidal fluctuations play a key role in plant zonation through alteration of soil aeration and salt transport, and drive the export of significant fluxes of carbon and nutrients to coastal water. Despite recent progress, major knowledge gaps remain. Previous studies focused on flows in creek-perpendicular marsh sections and overlooked multi-scale 3D behaviors. Understanding of marsh ecological-hydrological links under combined influences of different forcing factors and boundary disturbances is lacking. Variations of surface water and groundwater temperatures affect porewater flow, soil conditions and biogeochemical exchanges, but the extent and underlying mechanisms remain unknown. We need to fill these knowledge gaps to advance understanding of salt marshes and thus enhance our ability to protect and restore them.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy