SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9789292212940 "

Sökning: L773:9789292212940

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balmer, G., et al. (författare)
  • ISAAC : A REXUS STUDENT EXPERIMENT TO DEMONSTRATE AN EJECTION SYSTEM WITH PREDEFINED DIRECTION
  • 2015
  • Ingår i: EUROPEAN ROCKET AND BALLOON. - 9789292212940 ; , s. 235-242
  • Konferensbidrag (refereegranskat)abstract
    • ISAAC - Infrared Spectroscopy to Analyse the middle Atmosphere Composition was a student experiment launched from SSC's Esrange Space Centre, Sweden, on 29th May 2014, on board the sounding rocket REXUS 15 in the frame of the REXUS/BEXUS programme. The main focus of the experiment was to implement an ejection system for two large Free Falling Units (FFUs) (240 mm x 80 mm) to be ejected from a spinning rocket into a predefined direction. The system design relied on a spring-based ejection system. Sun and angular rate sensors were used to control and time the ejection. The flight data includes telemetry from the Rocket Mounted Unit (RMU), received and saved during flight, as well as video footage from the GoPro camera mounted inside the RMU and recovered after the flight. The FFUs' direction, speed and spin frequency as well as the rocket spin frequency were determined by analyzing the video footage. The FFU-Rocket-Sun angles were 64.3 degrees and 104.3 degrees, within the required margins of 90 degrees +/- 45 degrees. The FFU speeds were 3.98 m/s and 3.74 m/s, lower than the expected 5 +/- 1 m/s. The FFUs' spin frequencies were 1.38 Hz and 1.60 Hz, approximately half the rocket's spin frequency. The rocket spin rate slightly changed from 3.163 Hz before the ejection to 3.117 Hz after the ejection of the two FFUs. The angular rate, sun sensor data and temperature on the inside of the rocket module skin were also recorded. The experiment design and results of the data analysis are presented in this paper.
  •  
2.
  • Bergström, Rasmus, et al. (författare)
  • SCATTERING OF RADAR WAVES ON AEROSOLS IN PLASMAS
  • 2015
  • Ingår i: EUROPEAN ROCKET AND BALLOON. - 9789292212940 ; , s. 87-94
  • Konferensbidrag (refereegranskat)abstract
    • To study the physical mechanisms of phenomena such as polar mesospheric summer echoes, the SCRAP (Scattering of Radar waves on Aerosols in Plasmas) experiment aimed to validate theories on density fluctuations in dusty plasmas. The SCRAP team developed two identical free falling units (FFUs) designed to create a cloud of copper particles once they eject from the REXUS17 sounding rocket 124 seconds after launch. By using the EISCAT incoherent scatter radar system to observe the cloud, the SCRAP experiment proposed to relate theoretical predictions to a controlled object. The SCRAP experiment was launched from ESRANGE on March the 17th 2015. The FFUs GPS signal was lost during launch and the units were therefore not found. Moreover, no backscattering from the copper cloud was observed by the radar.
  •  
3.
  • Berquand, Audrey (författare)
  • EXPERIENCE FROM THE STUDENT PROGRAMME REXUS/BEXUS : A STEPPING STONE TO A SPACE CAREER
  • 2015
  • Ingår i: EUROPEAN ROCKET AND BALLOON. - 9789292212940 ; , s. 63-67
  • Konferensbidrag (refereegranskat)abstract
    • The aim of this paper is to give an inside view to the REXUS/BEXUS programme from the perspective of a student who has been involved in the project. Each year, the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB), in cooperation with the European Space Agency (ESA), offer the opportunity to European University Students to fly an experiment on board sounding rockets or stratospheric balloons in the frame of the REXUS/BEXUS programme. From December 2012 to May 2014 a team of master students from KTH, the Royal Institute of Technology, worked on ISAAC project, an atmospheric experiment launched on board REXUS 15. The author was part of this student team and was involved in the whole process of the ISAAC project from design building and testing phases to the launch campaign and results analysis. The points raised in this article were presented on the occasion of a keynote speech during the 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, in Tromso (Norway) from the 7th to the 12th of June 2015. The aim of this presentation was to demonstrate the benefits of hands-on Education programme at University level. In addition to the research opportunities, future space engineers and scientists can profit from a first practical experience under the supervision of experimented experts. The results of the ISAAC project were also presented in the frame of this conference [1].
  •  
4.
  • Sinn, Thomas, et al. (författare)
  • THE EXPERIMENT THAT CAME FROM THE COLD : RESULTS FROM THE RECOVERED REXUS12 SUAINEADH SPINNING WEB EXPERIMENT
  • 2015
  • Ingår i: EUROPEAN ROCKET AND BALLOON. - 9789292212940 ; , s. 449-459
  • Konferensbidrag (refereegranskat)abstract
    • The Suaineadh experiment had the purpose to deploy a 2m x 2m web in milli gravity conditions by using the centrifugal forces acting on corner sections of a web that is spinning around a central hub. Continuous exploration of our solar system and beyond requires ever larger structures in space. But the biggest problem nowadays is the transport of these structures into space due to launch vehicle payload volume constrains. By making the space structures deployable with minimum storage properties, this constrain may be bypassed. Deployable concepts range from inflatables, foldables, electrostatic to spinning web deployment. The advantage of the web deployment is the very low storage volume and the simple deployment mechanism. These webs can act as lightweight platforms for the construction of large structures in space without the huge expense of launching heavy structures from Earth. The Suaineadh experiment was launched onboard the sounding rocket REXUS12 in March 2012. After achieving the required altidue, the Suaineadh experiment was ejected from the rocket in order to be fully free flying. A specially designed spinning wheel in the ejected section was then used to spin up the experiment until the required rate is achieved for web deployment to commence. Unfortunately during re-entry, the probe was lost and also a recovery mission in August 2012 was only able to find minor components of the experiment. After 18 month, in September 2013, the experiment was found in the wilderness of Northern Sweden. In the following months all data from the experiment could be recovered. The images and accelerometer data that has been analysed showed the deployment of the web and a very interesting three dimensional behaviour that differs greatly from on ground two dimensional prototype tests. This paper will give an overview on the recovered data and it will present the analysed results of the Suaineadh spinning web experiment.
  •  
5.
  • Yuan, Yunxia, et al. (författare)
  • RECONSTRUCTION OF ATTITUDE DYNAMICS OF FREE FALLING UNITS
  • 2015
  • Ingår i: EUROPEAN ROCKET AND BALLOON. - 9789292212940 ; , s. 107-113
  • Konferensbidrag (refereegranskat)abstract
    • Attitude reconstruction of a free falling sphere for the experiment Multiple Spheres for Characterization of Atmosphere Temperatures (MUSCAT) is studied in this paper. The attitude dynamics is modeled through Euler's rotational equations of motion. To estimate uncertain parameters in this model such as the matrix of inertia and the lever arm for the dynamic pressure with respect to the center of mass, the dynamics reconstruction can be formulated as an optimization problem. The goal is to minimize the deviation between the measurements and the propagation from the system equations. This approach was tested against a couple of flight data sets which correspond to different periods of time. The result is very reasonable compared to the laboratory test. The estimate can be improved further through allowing drag coefficients variable and taking advantage of measurements from a magnetometer in numerical calculation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy