SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abdelhamid Hani Nasser) "

Sökning: WFRF:(Abdelhamid Hani Nasser)

  • Resultat 1-25 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Magied, Ahmed Fawzy, et al. (författare)
  • Hierarchical porous zeolitic imidazolate framework nanoparticles for efficient adsorption of rare-earth elements
  • 2019
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier. - 1387-1811 .- 1873-3093. ; 278, s. 175-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical porous zeolitic imidazolate frameworks nanoparticles (ZIF-8 NPs) were synthesized at room temperature via a template-free approach under dynamic conditions (stirring) using water as a solvent. The ZIF-8 NPs were evaluated as adsorbents for rare earth elements (La3+, Sm3+ and Dy3+). Adsorption equilibrium was reached after 7h and high adsorption capacities were obtained for dysprosium and samarium (430.4 and 281.1 mg g(-1), respectively) and moderate adsorption capacity for lanthanum (28.8 mg g(-1)) at a pH of 7.0. The high adsorption capacitiese, as well as the high stability of ZIF-8 NPs, make the hierarchical ZIF-8 materials as an efficient adsorbent for the recovery of La3+, Sm3+ and Dy3+ from aqueous solution.
  •  
2.
  • Abdelhamid, Hani Nasser, 1986-, et al. (författare)
  • 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO2) and heavy metal ions
  • 2023
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 52:10, s. 2988-2998
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal–organic frameworks (MOFs) have advanced several technologies. However, it is difficult to market MOFs without processing them into a commercialized structure, causing an unnecessary delay in the material's use. Herein, three-dimensional (3D) printing of cellulose/leaf-like zeolitic imidazolate frameworks (ZIF-L), denoted as CelloZIF-L, is reported via direct ink writing (DIW, robocasting). Formulating CelloZIF-L into 3D objects can dramatically affect the material's properties and, consequently, its adsorption efficiency. The 3D printing process of CelloZIF-L is simple and can be applied via direct printing into a solution of calcium chloride. The synthesis procedure enables the formation of CelloZIF-L with a ZIF content of 84%. 3D printing enables the integration of macroscopic assembly with microscopic properties, i.e., the formation of the hierarchical structure of CelloZIF-L with different shapes, such as cubes and filaments, with 84% loading of ZIF-L. The materials adsorb carbon dioxide (CO2) and heavy metals. 3D CelloZIF-L exhibited a CO2 adsorption capacity of 0.64–1.15 mmol g−1 at 1 bar (0 °C). The materials showed Cu2+ adsorption capacities of 389.8 ± 14–554.8 ± 15 mg g−1. They displayed selectivities of 86.8%, 6.7%, 2.4%, 0.93%, 0.61%, and 0.19% toward Fe3+, Al3+, Co2+, Cu2+, Na+, and Ca2+, respectively. The simple 3D printing procedure and the high adsorption efficiencies reveal the promising potential of our materials for industrial applications.
  •  
3.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • A Fast and Scalable Approach for Synthesis of Hierarchical Porous Zeolitic Imidazolate Frameworks and One-Pot Encapsulation of Target Molecules
  • 2017
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 56:15, s. 9139-9146
  • Tidskriftsartikel (refereegranskat)abstract
    • A trimethylamine (TEA)-assisted synthesis approach that combines the preparation of hierarchical porous zeolitic imidazolate framework ZIF-8 nanoparticles and one-pot encapsulation of target molecules is presented. Two dye molecules, rhodamine B (RhB) and methylene blue (MB), and one protein (bovine serum albumin, BSA) were tested as the target molecules. The addition of TEA into the solution of zinc nitrate promoted the formation of ZnO nanocrystals, which rapidly transformed to ZIF-8 nanoparticles after the addition of the linker 2-methylimidazole (Hmim). Hierarchical porous dye@ZIF-8 nanoparticles with high crystallinity, large BET surface areas (1300–2500 m2/g), and large pore volumes (0.5–1.0 cm3/g) could be synthesized. The synthesis procedure was fast (down to 2 min) and scalable. The Hmim/Zn ratio could be greatly reduced (down to 2:1) compared to previously reported ones. The surface areas, and the mesopore size, structure, and density could be modified by changing the TEA or dye concentrations, or by postsynthetic treatment using reflux in methanol. This synthesis and one-pot encapsulation approach is simple and can be readily scaled up. The photophysical properties such as lifetime and photostability of the dyes could be tuned via encapsulation. The lifetimes of the encapsulated dyes were increased by 3–27-fold for RhB@ZIF-8 and by 20-fold for MB@ZIF-8, compared to those of the corresponding free dyes. The synthesis approach is general, which was successfully applied for encapsulation of protein BSA. It could also be extended for the synthesis of hierarchical porous cobalt-based ZIF (dye@ZIF-67).
  •  
4.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan
  • 2017
  • Ingår i: Microchimica Acta. - : Springer Science and Business Media LLC. - 0026-3672 .- 1436-5073. ; 184:9, s. 3363-3371
  • Tidskriftsartikel (refereegranskat)abstract
    • The preparation of a highly water stable and porous lanthanide metal-organic framework (MOF) nanoparticles (denoted SUMOF-7II; SU refers to Stockholm University) is described. SUMOF-7II was synthesized starting from the tritopic linker of 2,4,6-tri-p-carboxyphenyl pyridine (H3L2) and La(III) as metal clusters. SUMOF-7II forms a stable dispersion and displays high fluorescence emission with small variation over the pH range of 6 to 12. Its fluorescence is selectively quenched by Fe(III) ions compared to other metal ions. The intensity of the fluorescene emission drops drops linearly in 16.6–167 μM Fe(III) concentration range, and Stern-Volmer plots are linear. The limit of detection (LOD) is 16.6 μM (at an S/N ratio of >3). This indicator probe can also be used for selective detection of tryptophan among several amino acids. Compared to the free linker H3L2, SUMOF-7II offers improved sensitivity and selectivity of the investigated species.
  •  
5.
  • Abdelhamid, Hani Nasser, 1986-, et al. (författare)
  • Binder-free Three-dimensional (3D) printing of Cellulose-ZIF8 (CelloZIF-8) for water treatment and carbon dioxide (CO2) adsorption
  • 2023
  • Ingår i: Chemical Engineering Journal. - 1385-8947 .- 1873-3212. ; 468
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-organic frameworks (MOFs) have advanced several applications, including energy, biomedical and envi-ronmental remediation. However, most of the reported MOF materials are in powder form limiting their ap-plications. This study reported the processing of MOF via three-dimensional (3D) printing of cellulose-MOFs (denoted as CelloMOFs). The 3D printing procedure involved a one-pot method including three steps: gel for-mation, 3D printing, and in-situ growth of MOF crystals. This procedure offered 3D printing of CelloMOF via a binder-free method with high loading of 67.5 wt%. The 3D-printed porous structures were used as adsorbents for carbon dioxide (CO2), dye, and heavy metal ions. They can be also used as catalysts for the degradation of water pollutants such as organic dyes. The materials can be separated easily without requiring extra procedures such as centrifugation or filtration. The materials offered complete (>99%) removal of organic dyes within 10 min with high selectivity toward anionic dyes e.g, methyl blue (MeB). The materials exhibited CO2 and heavy metal ions adsorption capacities of 0.63 mmol/g (27.7 mg/g) and 8-328 mg/g, respectively, with good recyclability. Our methodology will open new venues for advanced 3D printing of CelloMOF and its applications for water treatment and air purification.
  •  
6.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Carbonized chitosan encapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticles for gene delivery
  • 2020
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 302
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical mesoporous carbon (MPC) nanomaterials derived from the carbonized chitosan (CTS) encapsulated zeolitic imidazolate frameworks (ZIF-8) is synthesized and applied for gene delivery. The synthesis of ZIF-8 is achieved at room temperature using water as a solvent in the presence of CTS within 60 min. The synthesis method offered a hierarchical porous structure of ZIF-8. The carbonization of the prepared materials leads to the formation of MPC nanomaterials. MPC materials were applied as a non-viral vectors for gene delivery using two oligonucleotides (ONs) called Luciferase-expressing plasmid (pGL3), and splice correction oligonucleotides (SCO). The materials are biocompatible and showed insignificant toxicity. The transfection using MPC with and without cell-penetrating peptides (CPPs) was reported. MPC improved the transfection efficiency of CPPs (PepFect 14 (PF-14), and PF-221) by 10 fold due to the synergistic effect of MCP and CPPs. The reasonable mechanism for the cell transfection using these new vectors was also highlighted.
  •  
7.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • CelloZIFPaper : Cellulose-ZIF hybrid paper for heavy metal removal and electrochemical sensing
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 446
  • Tidskriftsartikel (refereegranskat)abstract
    • The processing of hierarchical porous zeolitic imidazolate frameworks (ZIF-8) into a cellulose paper using sheet former Rapid-Kothen (R.K.) is reported. The procedure is a promising route to overcome a significant bottleneck towards applying metal-organic frameworks (MOFs) in commercial products. ZIF-8 crystals were integrated into cellulose pulp (CP) or TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-oxidized cellulose nanofibrils (TOCNF) following an in-situ or ex-situ process; the materials were denoted as CelloZIFPaper_In Situ and CelloZIFPaper_Ex Situ, respectively. The materials were applied as adsorbents to remove heavy metals from water, with adsorption capacities of 66.2-354.0 mg/g. CelloZIFPaper can also be used as a stand-alone working electrode for the selective sensing of toxic heavy metals, for instance, lead ions (Pb2+), using electrochemical-based methods with a limit of detection (LOD) of 8 mu M. The electrochemical measurements may advance 'Lab-onCelloZIFPaper' technologies for label-free detection of heavy metal ions.
  •  
8.
  • Abdelhamid, Hani Nasser, 1986-, et al. (författare)
  • Cellulose-Based Materials for Water Remediation : Adsorption, Catalysis, and Antifouling
  • 2021
  • Ingår i: Frontiers in Chemical Engineering. - : Frontiers Media SA. - 2673-2718. ; 3
  • Forskningsöversikt (refereegranskat)abstract
    • Cellulose-based materials have been advanced technologies that used in water remediation. They exhibit several advantages being the most abundant biopolymer in nature, high biocompatibility, and contain several functional groups. Cellulose can be prepared in several derivatives including nanomaterials such as cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidized cellulose nanofibrils (TOCNF). The presence of functional groups such as carboxylic and hydroxyls groups can be modified or grafted with organic moieties offering extra functional groups customizing for specific applications. These functional groups ensure the capability of cellulose biopolymers to be modified with nanoparticles such as metal-organic frameworks (MOFs), graphene oxide (GO), silver (Ag) nanoparticles, and zinc oxide (ZnO) nanoparticles. Thus, they can be applied for water remediation via removing water pollutants including heavy metal ions, organic dyes, drugs, and microbial species. Cellulose-based materials can be also used for removing microorganisms being active as membranes or antibacterial agents. They can proceed into various forms such as membranes, sheets, papers, foams, aerogels, and filters. This review summarized the applications of cellulose-based materials for water remediation via methods such as adsorption, catalysis, and antifouling. The high performance of cellulose-based materials as well as their simple processing methods ensure the high potential for water remediation. 
  •  
9.
  • Abdelhamid, Hani Nasser, 1986-, et al. (författare)
  • Cellulose-Based Nanomaterials Advance Biomedicine : A Review
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:10
  • Forskningsöversikt (refereegranskat)abstract
    • There are various biomaterials, but none fulfills all requirements. Cellulose biopolymers have advanced biomedicine to satisfy high market demand and circumvent many ecological concerns. This review aims to present an overview of cellulose knowledge and technical biomedical applications such as antibacterial agents, antifouling, wound healing, drug delivery, tissue engineering, and bone regeneration. It includes an extensive bibliography of recent research findings from fundamental and applied investigations. Cellulose-based materials are tailorable to obtain suitable chemical, mechanical, and physical properties required for biomedical applications. The chemical structure of cellulose allows modifications and simple conjugation with several materials, including nanoparticles, without tedious efforts. They render the applications cheap, biocompatible, biodegradable, and easy to shape and process.
  •  
10.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Cellulose-metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications : A review
  • 2022
  • Ingår i: Coordination chemistry reviews. - : Elsevier BV. - 0010-8545 .- 1873-3840. ; 451
  • Forskningsöversikt (refereegranskat)abstract
    • Cellulose-MOFs (CelloMOFs) are attractive hybrid materials that make available a range of hitherto unattainable properties by conjugating cellulosic materials with metal-organic frameworks (MOFs). CelloMOFs have demonstrated a great potential to be applied in several fields such as water remediation, air purification, gas storage, sensing/biosensing, and biomedicine. CelloMOFs can act as an efficient adsorbent to remove emerging contaminants such as metals, dyes, drugs, antibiotics, pesticides, and oils in water via adsorption. They can be also used as catalysts for catalytic degradation, reduction, and oxidation of organic pollutants. They have been applied as filters for air purification via removing greenhouse gases such as carbon dioxide (CO2), volatile organic compounds (VOCs), and particulate matter (PMs). Biomedical applications such as antibacterial, drug delivery, biosensing were also reported for CelloMOFs materials. This review summarized the synthesis, characterization, and applications of cellulose-MOFs materials. It covered a broad overview of the status of the combination of cellulose in micron to nanoscale with MOFs. At the end of the review, the challenges and outlook regarding CelloMOFs were discussed. Hopefully, this review will be a useful guide for researchers and scientists who are looking for quick access to relevant references about CelloMOFs hybrid materials and their applications.
  •  
11.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Cellulose-zeolitic imidazolate frameworks (CelloZIFs) for multifunctional environmental remediation : Adsorption and catalytic degradation
  • 2021
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 426
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal growth of zeolitic imidazolate frameworks (ZIFs) on biopolymers such as cellulose is a promising method for obtaining hybrid materials that combinenatural and synthetic materials. Cellulose derivative viz. 2,2,6,6-tetramethylpiperidine-1-oxylradical (TEMPO)-mediated oxidized nanocellulose (TOCNF) was used to modulate the crystal growth of ZIF-8 (denoted as CelloZIF-8) and ZIF-L (CelloZIF-L). The synthesis procedure occurred in water at room temperature with and without NaOH. The reaction parameters such as the sequence of the chemical's addition and reactant molar ratio were investigated. The phases formed during the crystal growth were monitored. The data analysis ensured the presence of zinc hydroxide nitrate nanosheets modified TOCNF during the crystallization of CelloZIFs. These phases were converted to pure phases ofCelloZIF-8 and CelloZIF-L. The resultant CelloZIFs materials were used for the adsorption ofcarbon dioxide (CO2), metal ions, and dyes. The materials exhibited high selectivity with reasonable efficiency (100%) toward the adsorption of anionic dyes such as methyl blue (MeB). They can also be used as a catalyst for dye degradation via hydrogenation with an efficiency of 100%. CelloZIF crystals can be loaded into a filter paper for simple, fast, and selective adsorption of MeB from a dye mixture. The materials are recyclable for five cycles without significant loss of their performance. The mechanisms of adsorption and catalysis were also investigated.
  •  
12.
  • Abdelhamid, Hani Nasser, 1986- (författare)
  • Dye encapsulation and one-pot synthesis of microporous–mesoporous zeolitic imidazolate frameworks for CO2 sorption and adenosine triphosphate biosensing
  • 2023
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 52:8, s. 2506-2517
  • Tidskriftsartikel (refereegranskat)abstract
    • One-pot co-precipitation of target molecules e.g. organic dyes and the synthesis of a crystal containing microporous–mesoporous regimes of zeolitic imidazolate frameworks-8 (ZIF-8) are reported. The synthesis method can be used for cationic (rhodamine B (RhB), methylene blue (MB)), and anionic (methyl blue (MeB)) dyes. The crystal growth of the ZIF-8 crystals takes place via an intermediate phase of zinc hydroxyl nitrate (Zn5(OH)8(NO3)2) nanosheets that enabled the adsorption of the target molecules i.e., RhB, MB, and MeB into their layers. The dye molecules play a role during crystal formation. The successful encapsulation of the dye molecules was proved via diffuse reflectance spectroscopy (DRS) and electrochemical measurements e.g., cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The materials were investigated for carbon dioxide (CO2) adsorption and adenosine triphosphate (ATP) biosensing. ZIF-8, RhB@ZIF-8, MB@ZIF-8, and MeB@ZIF-8 offered CO2 adsorption capacities of 0.80, 0.84, 0.85, and 0.53 mmol g−1, respectively. The encapsulated cationic molecules improved the adsorption performance compared to anionic molecules inside the crystal. The materials were also tested as a fluorescent probe for ATP biosensing. The simple synthesis procedure offered new materials with tunable surface properties and the potential for multi-functional applications.
  •  
13.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks
  • 2020
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 300
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-penetrating peptides (CPPs), and metal-organic frameworks (MOFs) are promising as next-generation for the delivery of gene-based therapeutic agents. Oligonucleotide (ON)-mediated assembly of nanostructures composed of hierarchical porous zeolitic imidazolate framework (ZIF-8), and nanoparticles such as graphene oxide (GO), and magnetic nanoparticles (MNPs) for gene therapy are reported. Five different types of non-viral vectors (ZIF-8, RhB@ZIF-8, BSA@ZIF-8, MNPs@ZIF-8, and GO@ZIF-8), and three gene therapeutic agents (plasmid, splice correction oligonucleotides (SCO), and small interfering RNA (siRNA)) were investigated. The polyplexes were characterized and applied for gene transfection. The materials show very low toxicity with high efficiency for luciferase transfection. ZIF-8 enhances the transfection of plasmid, SCO, siRNA of CPPs by 2-8 folds. The mechanism of the cell uptakes was also highlighted. Data reveal cell internalization via scavenger class A (SCARA).
  •  
14.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • In-situ growth of zeolitic imidazolate frameworks into a cellulosic filter paper for the reduction of 4-nitrophenol
  • 2021
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 274
  • Tidskriftsartikel (refereegranskat)abstract
    • Whatman (R) cellulosic filter paper was used as a substrate for the synthesis of two zeolitic imidazolate frameworks (ZIFs); ZIF-8 and ZIF-67 with and without 2,2,6,6-tetramethyl-1-piperidine oxoammonium salt (TEMPO) oxidized cellulose nanofibril (TOCNF). All synthesis procedures take place at room temperature via a one-pot procedure. The synthesis steps were followed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transforms infrared (FT-IR). Data indicated the formation of metal oxide that converted to a pure phase of ZIFs after the addition of the organic linker i.e. 2-methyl imidazole (Hmim). The materials were characterized using XRD, FT-IR, SEM, energy dispersive X-ray (EDX), nitrogen adsorption-desorption isotherms, and X-ray photoelectron microscope (XPS). Data analysis confirms the synthesis of ZIFs into Whatman (R) filter paper. The materials were used for the reduction of pollutants such as 4-nitrophenol (4-NP) compound to 4-aminophenol (4-AP). The materials exhibit high potential for water treatment and may open new exploration for hybrid materials consisting of cellulose and ZIFs.
  •  
15.
  • Abdelhamid, Hani Nasser, 1986- (författare)
  • Lanthanide Metal-Organic Frameworks and Hierarchical Porous Zeolitic Imidazolate Frameworks : Synthesis, Properties, and Applications
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents the synthesis, properties, and applications of two important classes of metal-organic frameworks (MOFs); lanthanide MOFs and hierarchical porous zeolitic imidazolate frameworks (ZIFs). The materials have been characterized using a wide range of techniques including diffraction, imaging, various spectroscopic techniques, gas sorption, dynamical light scattering (DLS) and thermogravimetric analysis (TGA).In Chapter 1, the unique features of MOFs and ZIFs as well as their potential applications are summarized. In Chapter 2, different characterization techniques are presented.Chapter 3 describes a family of new isoreticular lanthanide MOFs synthesized using tri-topic linkers of different sizes, H3L1-H3L4, denoted SUMOF-7I-IV (Ln) (SU; Stockholm University, Ln = La, Ce, Pr, Nd, Sm, Eu and Gd, Paper I). The SUMOF-7I-III (Ln) contain permanent pores and exhibit exceptionally high thermal and chemical stability. The luminescence properties of SUMOF-7IIs are reported (Paper II). The influences of Ln ions and the tri-topic linkers as well as solvent molecules on the luminescence properties are investigated. Furthermore, the potential of SUMOF-7II (La) for selective sensing of Fe (III) ions and the amino acid tryptophan is demonstrated (Paper III). Chapter 4 presents a simple, fast and scalable approach for the synthesis of hierarchical porous zeolitic imidazolate framework ZIF-8 and ZIF-67 using triethylamine (TEA)-assisted approach (Paper IV). Organic dye molecules and proteins are encapsulated directly into the ZIFs using the one-pot method. The photophysical properties of the dyes are improved through the encapsulation into ZIF-8 nanoparticles (Paper IV). The porosity and surface area of the ZIF materials can be tuned using the different amounts of dye or TEA. To further simplify the synthesis of hierarchical porous ZIF-8, a template-free approach is presented using sodium hydroxide, which at low concentrations induces the formation of zinc hydroxide nitrate nanosheets that serve as in situ sacrificial templates (Chapter 5, Paper V). A 2D leaf-like ZIF (ZIF-L) is also obtained using the method. The hierarchical porous ZIF-8 and ZIF-L show good performance for CO2 sorption.
  •  
16.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Luminescence properties of a family of lanthanide metal-organic frameworks
  • 2019
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 279, s. 400-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Two isostructural series of lanthanide metal-organic frameworks denoted as SUMOF-7II (Ln) and SUMOF-7IIB (Ln) (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) were synthesized using4,4',4 ''-(pyridine-2,4,6-triyl)tris(benzoic acid) (H(3)L2) and a mixture of H(3)L2 and 4,4',4 ''-(benzene-1,3,5-triyl)tris(benzoic acid) (H3BTB) as linkers, respectively. Both series were characterized using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis (TGA), and photoluminescence spectroscopy. Photoluminescence measurements show that Eu-MOFs demonstrate a red emission while Pr- and Nd-MOFs display an emission in the near-infrared (NIR) range. On the other hand, La-, Ce-, Sm- and Gd-MOFs exhibit only a ligand-centered emission. The average luminescence lifetimes in the SUMOF-7IIB series are 1.3-1.4-fold longer than the corresponding ones in the SUMOF-7II series. SUMOF-7IIs show a good photo- and thermal stability. Altogether, the properties of SUMOF-7II and SUMOF-7IIB render them promising materials for applications including sensing, biosensing, and telecommunications.
  •  
17.
  • Abdelhamid, Hani Nasser, 1986- (författare)
  • MOFTextile : Metal-organic frameworks nanosheets incorporated cotton textile for selective vapochromic sensing and capture of pyridine
  • 2023
  • Ingår i: Applied organometallic chemistry. - : Wiley. - 0268-2605 .- 1099-0739. ; 37:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal–organic frameworks (MOFs) improved several trends and are promising for industrial applications. However, current synthesis processes offer powder form, rendering their applications difficult. A simple solvothermal method offered an in situ growth of copper-based MOFs, for example, CuBDC (BDC: benzene-1,4-dicarboxylic acid) into a cotton textile; the material was denoted as CuBDC@Textile. CuBDCTextile was used as a solid sensor and adsorbent for volatile organic compounds (VOCs). It exhibited good vapochromic properties that enabled a colorimetric detection of pyridine (Py) via naked eyes with high selectivity and good sensitivity. Adsorption of pyridine via pervaporation using CuBDC@Textile was recorded. CuBDCTextile is a flexible textile with a high adsorption capacity (137.9 mg g−1) toward pyridine. It offered dual functional: sensor probe and adsorbent. The synthesis of CuBDC@Textile and their excellent performance as a sensor and adsorbent are promising for further investigation of the “MOFs on textile materials” topic.
  •  
18.
  • Abdelhamid, Hani Nasser (författare)
  • Surfactant assisted synthesis of hierarchical porous metal-organic frameworks nanosheets
  • 2019
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 30:43
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional metal-organic frameworks show increasing research attention due to their unique properties including tunable thickness, simple packing into a film and membrane, and high surface-to-volume atom ratios. A bottom-up synthesis strategy using cetyltrimethylammonium bromide for the synthesis of copper-benzenedicarboxylate (Cu(BDC)) nanosheets is reported. The method offers the synthesis of hierarchical porous Cu(BDC) lamellae with micrometer lateral dimensions, and nanometer thickness (100-150 nm). Electron microscope (scanning and transmission), and N-2 adsorption isotherms confirm the formation of lamellae Cu(BDC) with mesopore size of 5-80 nm. The material has thermal stability up to 400 degrees C with good chemical stability in several organic solvents. However, the material transforms to another phase (Cu(BDC)(H2O)(2)) when soaked in water and alcohols. The transformation reduces crystal size and offers the formation of hydrogen bond resulting in an increase in the sorption of CO2 by similar to 10% compared to the pristine material Cu(BDC).
  •  
19.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO2 sorption
  • 2018
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 20:5, s. 1074-1084
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical porous zeolitic imidazolate framework ZIF-8 nanoparticles have been synthesized using zinc nitrate, 2-methylimidazole (Hmim), and sodium hydroxide. Zinc hydroxide nitrate nanosheets were formed as intermediates that further transformed to hierarchical porous ZIF-8 after the addition of Hmim. These intermediates serve as in situ sacrificial templates and promote the formation of hierarchical porous ZIF-8 without the need for any other templates. The surface area and mesoporosity of the materials can be tuned by adjusting the concentration of NaOH. This method offers a fast and template-free approach for the synthesis of pure hierarchical porous ZIF-8 at room temperature with tunable porosity. The approach has been applied to synthesize two-dimensional ZIF leaf-like materials, ZIF-L. The synthesis of ZIF-8 and ZIF-L can be scaled up with high yields (>80%). The resulting ZIF-8 and ZIF-L materials show very good CO2 sorption properties. ZIF-8 nanoparticles show fast (<5 min), selective, and high efficiency (>95%) uptake of methyl blue in aqueous solution both without and in the presence of other dyes. The results open a new avenue for the understanding of the self-assembly and the formation of hierarchical porous ZIFs.
  •  
20.
  • Abdelhamid, Hani Nasser, 1986-, et al. (författare)
  • Three-Dimensional Printing of Cellulose/Covalent Organic Frameworks (CelloCOFs) for CO2 Adsorption and Water Treatment
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - 1944-8244 .- 1944-8252. ; 15:51, s. 59795-59805
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of porous organic polymers, specifically covalent organic frameworks (COFs), has facilitated the advancement of numerous applications. Nevertheless, the limited availability of COFs solely in powder form imposes constraints on their potential applications. Furthermore, it is worth noting that COFs tend to undergo aggregation, leading to a decrease in the number of active sites available within the material. This work presents a comprehensive methodology for the transformation of a COF into three-dimensional (3D) scaffolds using the technique of 3D printing. As part of the 3D printing process, a composite material called CelloCOF was created by combining cellulose nanofibrils (CNF), sodium alginate, and COF materials (i.e., COF-1 and COF-2). The intervention successfully mitigated the agglomeration of the COF nanoparticles, resulting in the creation of abundant active sites that can be effectively utilized for adsorption purposes. The method of 3D printing can be described as a simple and basic procedure that can be adapted to accommodate hierarchical porous materials with distinct micro- and macropore regimes. This technology demonstrates versatility in its use across a range of COF materials. The adsorption capacities of 3D CelloCOF materials were evaluated for three different adsorbates: carbon dioxide (CO2), heavy metal ions, and perfluorooctanesulfonic acid (PFOS). The results showed that the materials exhibited adsorption capabilities of 19.9, 7.4–34, and 118.5–410.8 mg/g for CO2, PFOS, and heavy metals, respectively. The adsorption properties of the material were found to be outstanding, exhibiting a high degree of recyclability and exceptional selectivity. Based on our research findings, it is conceivable that the utilization of custom-designed composites based on COFs could present new opportunities in the realm of water and air purification.
  •  
21.
  • Abdelhamid, Hani Nasser, et al. (författare)
  • Towards implementing hierarchical porous zeolitic imidazolate frameworks in dye-sensitized solar cells
  • 2019
  • Ingår i: Royal Society Open Science. - : Royal Society Publishing. - 2054-5703. ; 6:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A one-pot method for encapsulation of dye, which can be applied for dye-sensitized solar cells (DSSCs), and synthesis of hierarchical porous zeolitic imidazolate frameworks (ZIF-8), is reported. The size of the encapsulated dye tunes the mesoporosity and surface area of ZIF-8. The mesopore size, Langmuir surface area and pore volume are 15 nm, 960-1500 m(2). g(-1) and 0.36-0.61 cm(3). g(-1), respectively. After encapsulation into ZIF-8, the dyes show longer emission lifetimes (greater than 4-8-fold) as compared to the corresponding non-encapsulated dyes, due to suppression of aggregation, and torsional motions.
  •  
22.
  • Abdelhamid, Hani Nasser (författare)
  • Zinc hydroxide nitrate nanosheets conversion into hierarchical zeolitic imidazolate frameworks nanocomposite and their application for CO2 sorption
  • 2020
  • Ingår i: Materials Today Chemistry. - : Elsevier BV. - 2468-5194. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical porous zeolitic imidazolate frameworks (HZIFs) are promising materials for several applications, including adsorption, separation, and nanomedicine. Herein, the conversion of zinc hydroxide nitrate nanosheets into HZIF-8 nanocomposite with graphene oxide (GO) and magnetic nanoparticles (MNPs) is reported. The conversion takes place at room temperature in water. This approach has been successfully applied for the formation of leaf-like ZIF(ZIF-L), and their nanocomposites with nanoparticles, such as GO and MNPs. This method offers a simple approach for the synthesis of tunable pore structure using nanoparticles and fast room temperature conversion (30 min) without any visible residual impurities of zinc hydroxide nitrates. The applications of HZIF-8, ZIF-L, and their nanocomposites, for CO2 sorption, exhibit excellent adsorption properties. The synthesized composites exhibit enhanced CO2 adsorption capacity due to the synergistic effect between nanoparticles (GO, or MNPs), and ZIF-8. The materials have good potential for further applications.
  •  
23.
  • Aguilar-Sanchez, Andrea, et al. (författare)
  • Charged ultrafiltration membranes based on TEMPO-oxidized cellulose nanofibrils/poly(vinyl alcohol) antifouling coating
  • 2021
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 11:12, s. 6859-6868
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports the potential of TEMPO-oxidized cellulose nanofibrils (T-CNF)/poly(vinyl alcohol) (PVA) coatings to develop functionalized membranes in the ultrafiltration regime with outstanding antifouling performance and dimensional/pH stability. PVA acts as an anchoring phase interacting with the polyethersulfone (PES) substrate and stabilizing for the hygroscopic T-CNF via crosslinking. The T-CNF/PVA coated PES membranes showed a nano-textured surface, a change in the surface charge, and improved mechanical properties compared to the original PES substrate. A low reduction (4%) in permeance was observed for the coated membranes, attributable to the nanometric coating thickness, surface charge, and hydrophilic nature of the coated layer. The coated membranes exhibited charge specific adsorption driven by electrostatic interaction combined with rejection due to size exclusion (MWCO 530 kDa that correspond to a size of similar to 35-40 nm). Furthermore, a significant reduction in organic fouling and biofouling was found for T-CNF/PVA coated membranes when exposed to BSA and E. coli. The results demonstrate the potential of simple modifications using nanocellulose to manipulate the pore structure and surface chemistry of commercially available membranes without compromising on permeability and mechanical stability.
  •  
24.
  • Ashour, Radwa M., et al. (författare)
  • Rare Earth Ions Adsorption onto Graphene Oxide Nanosheets
  • 2017
  • Ingår i: Solvent extraction and ion exchange. - : Informa UK Limited. - 0736-6299 .- 1532-2262. ; 35:2, s. 91-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene oxide (GO) was synthesized and used as a coagulant of rare earth elements (REEs) from aqueous solution. Stability and adsorption capacities were exhibited for target REEs such as La(III), Nd(III), Gd(III), and Y(III). The parameters influencing the adsorption capacity of the target species including contact time, pH, initial concentration, and temperature were optimized. The adsorption kinetics and thermodynamics were studied. The method showed quantitative recovery (99%) upon desorption using HNO3 acid (0.1 M) after a short contact time (15 min).
  •  
25.
  • Dowaidar, Moataz, et al. (författare)
  • Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles–cell-penetrating peptide
  • 2018
  • Ingår i: Journal of biomaterials applications. - : SAGE Publications. - 0885-3282 .- 1530-8022. ; 33:3, s. 392-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene-based therapies, including the delivery of oligonucleotides, offer promising methods for the treatment of cancer cells. However, they have various limitations including low efficiency. Herein, cell-penetrating peptides (CPPs)-conjugated chitosan-modified iron oxide magnetic nanoparticles (CPPs-CTS@MNPs) with high biocompatibility as well as high efficiency were tested for the delivery of oligonucleotides such as plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA. A biocompatible nanocomposite, in which CTS@MNPs was incorporated in non-covalent complex with CPPs-oligonucleotide, is developed. Modifying the surface of magnetic nanoparticles with cationic chitosan-modified iron oxide improved the performance of magnetic nanoparticles-CPPs for oligonucleotide delivery. CPPs-CTS@MNPs complexes enhance oligonucleotide transfection compared to CPPs@MNPs or CPPs. The hydrophilic character of CTS@MNPs improves complexation with plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA payload, which consequently resulted in not only strengthening the colloidal stability of the constructed complex but also improving their biocompatibility. Transfection using PF14-splice correction oligonucleotides-CTS@MNPs showed sixfold increase of the transfection compared to splice correction oligonucleotides-PF14 that showed higher transfection than the commercially available lipid-based vector Lipofectamine™ 2000. Nanoscaled CPPs-CTS@MNPs comprise a new family of biomaterials that can circumvent some of the limitations of CPPs or magnetic nanoparticles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 42
Typ av publikation
tidskriftsartikel (35)
forskningsöversikt (3)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Abdelhamid, Hani Nas ... (31)
Zou, Xiaodong (16)
Mathew, Aji P. (11)
Abdelhamid, Hani Nas ... (10)
Mathew, Aji P., 1971 ... (6)
Dowaidar, Moataz (6)
visa fler...
Langel, Ülo (6)
Sultan, Sahar, 1987- (4)
Georgouvelas, Dimitr ... (4)
Hällbrink, Mattias (4)
Ashour, Radwa M. (3)
Martín-Matute, Belén (3)
Edlund, Ulrica, 1972 ... (3)
Abdel-Magied, Ahmed ... (2)
Bermejo-Gomez, Anton ... (2)
El-Zohry, Ahmed (2)
Hall, Stephen A. (1)
Abdel-Khalek, Ahmed ... (1)
Ali, M. M. (1)
Shatskiy, Andrey (1)
Kärkäs, Markus D. (1)
Johnston, Eric V. (1)
Abdel-Magied, Ahmed ... (1)
Forsberg, Kerstin, 1 ... (1)
Åkermark, Björn (1)
Wilk-Kozubek, Magdal ... (1)
Valiente, Alejandro (1)
Mudring, Anja-Verena (1)
Huang, Zhehao (1)
Haoquan, Zheng (1)
Zou, Xiaodong, Profe ... (1)
Martín-Matute, Belén ... (1)
Chen, Banglin, Profe ... (1)
Gómez, Antonio Berme ... (1)
El-Zohry, Ahmed M. (1)
Cong, Jiayan (1)
Thersleff, Thomas (1)
Karlsson, Karl Marti ... (1)
Kloo, Lars (1)
Uheida, Abdusalam (1)
Muhammed, Mamoun (1)
Su, Jie (1)
Liu, Leifeng (1)
Sun, Junliang (1)
Li, Jing (1)
Aguilar-Sanchez, And ... (1)
Jalvo, Blanca (1)
Mautner, Andreas (1)
Rissanen, Ville (1)
Kontturi, Katri S. (1)
visa färre...
Lärosäte
Stockholms universitet (41)
Kungliga Tekniska Högskolan (9)
Uppsala universitet (5)
Språk
Engelska (42)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (38)
Teknik (14)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy