SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abou Hamad Edy) "

Sökning: WFRF:(Abou Hamad Edy)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abou-Hamad, Edy, et al. (författare)
  • Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance
  • 2011
  • Ingår i: New Journal of Physics. - : IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. - 1367-2630. ; 13, s. 053045 (1)-(9)
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the electronic properties of Cs-intercalated singlewalled carbon nanotubes (SWNTs). A detailed analysis of the 13C and133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The ‘metallization’ of CsxC materials where x =0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF)at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x = 0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x <0.05 (α-phase), whereas it reaches a plateau in the range 0.05 < x < 0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2)orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.
  •  
2.
  • Abou-Hamad, Edy, et al. (författare)
  • Hydrogenation of C-60 in Peapods: Physical Chemistry in Nano Vessels
  • 2009
  • Ingår i: The Journal of Physical Chemistry C. - WASHINGTON, DC 20036 : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 113:20, s. 8583-8587
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogenation of C-60 molecules inside SWNT was achieved by direct reaction with hydrogen gas at elevated pressure and temperature. Evidence for the C-60 hydrogenation in peapods is provided by isotopic engineering with specific enrichment of encapsulated species and high resolution C-13 and H-1 NMR spectroscopy with the observation of characteristic diamagnetic and paramagnetic shifts of the NMR lines and the appearance of sp(3) carbon resonances. We estimate that approximately 78% of the C-60 molecules inside SWNTs are hydrogenated to an average degree of 14 hydrogen atoms per C-60 molecule. As a consequence, the rotational dynamics of the encapsulated C60Hx molecules is clearly hindered. Our successful hydrogenation experiments open completely new roads to understand and control confined chemical reactions at the nano scale
  •  
3.
  • Abou-Hamad, Edy, et al. (författare)
  • Molecular dynamics and phase transition in one-dimensional crystal of C60 encapsulated inside single wall carbon nanotubes
  • 2009
  • Ingår i: ACS Nano. - Washington, DC 20036 USA : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 3:12, s. 3878-3883
  • Tidskriftsartikel (refereegranskat)abstract
    • One-dimensional crystals of 25% 13C-enriched C60 encapsulated inside highly magnetically purified SWNTs were investigated by following the temperature dependence of the 13C NMR line shapes and the relaxation rates from 300 K down to 5 K. High-resolution MAS techniques reveal that 32% of the encapsulated molecules, so-called the C60α, are blocked at room temperature and 68%, labeled C60β, are shown to reversly undergo molecular reorientational dynamics. Contrary to previous NMR studies, spin−lattice relaxation time reveals a phase transition at 100 K associated with the changes in the nature of the C60β dynamics. Above the transition, the C60β exhibits continuous rotational diffusion; below the transition, C60β executes uniaxial hindered rotations most likely along the nanotubes axis and freeze out below 25 K. The associated activation energies of these two dynamical regimes are measured to be 6 times lower than in fcc-C60, suggesting a quiet smooth orientational dependence of the interaction between C60β molecules and the inner surface of the nanotubes.
  •  
4.
  • Kim, Y, et al. (författare)
  • Nanomagnetic shielding : High-resolution NMR in carbon allotropes
  • 2010
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics. - 0021-9606 .- 1089-7690. ; 132, s. 021102-
  • Tidskriftsartikel (refereegranskat)abstract
    • Theunderstanding and control of the magnetic properties of carbon-based materialsis of fundamental relevance in applications in nano- and biosciences.Ring currents do play a basic role in those systems.In particular the inner cavities of nanotubes offer an idealenvironment to investigate the magnetism of synthetic materials at thenanoscale. Here, by means of 13C high resolution NMR ofencapsulated molecules in peapod hybrid materials, we report the largestdiamagnetic shifts (down to −68.3 ppm) ever observed in carbonallotropes, which is connected to the enhancement of the aromaticityof the nanotube envelope upon doping. This diamagnetic shift canbe externally controlled by in situ modifications such as dopingor electrostatic charging. Moreover, defects such as C-vacancies, pentagons, andchemical functionalization of the outer nanotube quench this diamagnetic effectand restore NMR signatures to slightly paramagnetic shifts compared tononencapsulated molecules. The magnetic interactions reported here are robust phenomenaindependent of temperature and proportional to the applied magnetic field.The magnitude, tunability, and stability of the magnetic effects makethe peapod nanomaterials potentially valuable for nanomagnetic shielding in nanoelectronicsand nanobiomedical engineering
  •  
5.
  • Nitze, Florian, et al. (författare)
  • Carbon nanotubes and helical carbon nanofibers grown by chemical vapour deposition on C60 fullerene supported Pd nanoparticles
  • 2011
  • Ingår i: Carbon. - : Elsevier. - 0008-6223 .- 1873-3891. ; 49:4, s. 1101-1107
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical vapour deposition (CVD) represents a cheap and versatile method to produce carbon nanostructures. Here we present how we by using a standard CVD setup together with Pd nano particles as a catalyst can produce helical fibers with very periodic pitch, helicity, and narrow diameter distribution. The C60 supported Pd catalyst particles are produced by a wet chemistry process and applied to silicon substrates. By raising the growth temperature from 550 °C to 800 °C we can tune the growth products from helical carbon fibers to straight hollow carbon fibers and finally to carbon nanotubes at the highest temperatures. In the intermediate temperature region of 650 °C a mixture of all three components appears. At 550 °C the efficiency of the process is optimized by the amount of water during the growth. Different from most previous studies we can detect most of the catalyst particles embedded in the grown structures. In all fibers the catalyst particles are situated exactly in the middle of the fibers suggesting a two-directional growth. From the shape of the catalyst particles and by adopting a simple model we conclude that the fibers coil due to blocked carbon diffusion pathways on or through the catalyst particles.
  •  
6.
  • Yao, Mingguang, et al. (författare)
  • Confined adamantane molecules assembled to one dimension in carbon nanotubes
  • 2011
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 49:4, s. 1159-1166
  • Tidskriftsartikel (refereegranskat)abstract
    • We have encapsulated adamantane (C10H16) in single- and multi-walled carbon nanotubes. Adamantane is a high symmetry cage like molecule with point group symmetry T-d and can be considered as a hydrogen-terminated diamond fragment. We confirmed and identified the successful filling by high resolution transmission electron microscopy, C-13 nuclear magnetic resonance, infrared and Raman spectroscopy. C-13 nuclear magnetic resonance of the adamantane filled nanotubes reveals that the adamantane molecules stop rotating after encapsulation. A blue-shift of the Raman active radial breathing modes of the carbon nanotubes supports this and suggests a significant interaction between encapsulated adamantane molecules and the single wall nanotubes. The encapsulated adamantane molecules exhibit red shifted infrared C-H vibration modes which we assign to a slight elongation of the C-H bonds. We observe both a nanotube diameter dependence of the adamantane filling ratio and a release rate of adamantane from the CNTs that depends on the CNT diameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy