SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abrams Jesse F.) "

Sökning: WFRF:(Abrams Jesse F.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rammelt, Crelis F., et al. (författare)
  • Impacts of meeting minimum access on critical earth systems amidst the Great Inequality
  • 2023
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 6:2, s. 212-221
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources.
  •  
2.
  • Abrams, Jesse F., et al. (författare)
  • Committed Global Warming Risks Triggering Multiple Climate Tipping Points
  • 2023
  • Ingår i: Earth's Future. - 2328-4277. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Many scenarios for limiting global warming to 1.5(degrees)C assume planetary-scale carbon dioxide removal sufficient to exceed anthropogenic emissions, resulting in radiative forcing falling and temperatures stabilizing. However, such removal technology may prove unfeasible for technical, environmental, political, or economic reasons, resulting in continuing greenhouse gas emissions from hard-to-mitigate sectors. This may lead to constant concentration scenarios, where net anthropogenic emissions remain non-zero but small, and are roughly balanced by natural carbon sinks. Such a situation would keep atmospheric radiative forcing roughly constant. Fixed radiative forcing creates an equilibrium committed warming, captured in the concept of equilibrium climate sensitivity. This scenario is rarely analyzed as a potential extension to transient climate scenarios. Here, we aim to understand the planetary response to such fixed concentration commitments, with an emphasis on assessing the resulting likelihood of exceeding temperature thresholds that trigger climate tipping points. We explore transients followed by respective equilibrium committed warming initiated under low to high emission scenarios. We find that the likelihood of crossing the 1.5(degrees)C threshold and the 2.0(degrees)C threshold is 83% and 55%, respectively, if today's radiative forcing is maintained until achieving equilibrium global warming. Under the scenario that best matches current national commitments (RCP4.5), we estimate that in the transient stage, two tipping points will be crossed. If radiative forcing is then held fixed after the year 2100, a further six tipping point thresholds are crossed. Achieving a trajectory similar to RCP2.6 requires reaching net-zero emissions rapidly, which would greatly reduce the likelihood of tipping events.
  •  
3.
  • Armstrong McKay, David I., et al. (författare)
  • Exceeding 1.5°C global warming could trigger multiple climate tipping points
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 377:6611
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global “core” tipping elements and regional “impact” tipping elements and their temperature thresholds. Current global warming of ~1.1°C above preindustrial temperatures already lies within the lower end of some tipping point uncertainty ranges. Several tipping points may be triggered in the Paris Agreement range of 1.5 to <2°C global warming, with many more likely at the 2 to 3°C of warming expected on current policy trajectories. This strengthens the evidence base for urgent action to mitigate climate change and to develop improved tipping point risk assessment, early warning capability, and adaptation strategies. 
  •  
4.
  • Lenton, Timothy M., et al. (författare)
  • A resilience sensing system for the biosphere
  • 2022
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 377:1857
  • Tidskriftsartikel (refereegranskat)abstract
    • We are in a climate and ecological emergency, where climate change and direct anthropogenic interference with the biosphere are risking abrupt and/or irreversible changes that threaten our life-support systems. Efforts are underway to increase the resilience of some ecosystems that are under threat, yet collective awareness and action are modest at best. Here, we highlight the potential for a biosphere resilience sensing system to make it easier to see where things are going wrong, and to see whether deliberate efforts to make things better are working. We focus on global resilience sensing of the terrestrial biosphere at high spatial and temporal resolution through satellite remote sensing, utilizing the generic mathematical behaviour of complex systems—loss of resilience corresponds to slower recovery from perturbations, gain of resilience equates to faster recovery. We consider what subset of biosphere resilience remote sensing can monitor, critically reviewing existing studies. Then we present illustrative, global results for vegetation resilience and trends in resilience over the last 20 years, from both satellite data and model simulations. We close by discussing how resilience sensing nested across global, biome-ecoregion, and local ecosystem scales could aid management and governance at these different scales, and identify priorities for further work.
  •  
5.
  • Mohamed, Awaz, et al. (författare)
  • Securing Nature's Contributions to People requires at least 20%-25% (semi-)natural habitat in human-modified landscapes
  • 2024
  • Ingår i: One Earth. - 2590-3330 .- 2590-3322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The cascading effects of biodiversity decline on human well-being present a pressing challenge for sustainable development. Conservation efforts often prioritize safeguarding specific species, habitats, or intact ecosystems but overlook biodiversity's fundamental role in providing Nature's Contributions to People (NCP) in human -modified landscapes. Here, we systematically review 154 peer -reviewed studies to estimate the minimum levels of (semi -)natural habitat quantity, quality, and spatial configuration needed in human -modified landscapes to secure functional integrity essential for sustaining NCP provision. We find that the provision of multiple NCP is threatened when (semi -)natural habitat in the landscape falls below an area of 20%- 25% for each km2. Five NCP almost completely disappear below a level of 10% habitat. The exact quantity, quality, and spatial configuration of habitat required depends on local context and specific NCP. Today, about two-thirds of human -modified lands have insufficient (semi -)natural habitat, requiring action for NCP regeneration. Our findings serve as a generic guideline to target conservation actions outside natural areas.
  •  
6.
  • Obura, David O., et al. (författare)
  • Achieving a nature- and people-positive future
  • 2023
  • Ingår i: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 6:2, s. 105-117
  • Forskningsöversikt (refereegranskat)abstract
    • Despite decades of increasing investment in conservation, we have not succeeded in “bending the curve” of biodiversity decline. Efforts to meet new targets and goals for the next three decades risk repeating this outcome due to three factors: neglect of increasing drivers of decline; unrealistic expectations and time frames of biodiversity recovery; and insufficient attention to justice within and between generations and across countries. Our Earth system justice approach identifies six sets of actions that when tackled simultaneously address these failings: (1) reduce and reverse direct and indirect drivers causing decline; (2) halt and reverse biodiversity loss; (3) restore and regenerate biodiversity to a safe state; (4) raise minimum wellbeing for all; (5) eliminate over-consumption and excesses associated with accumulation of capital; and (6) uphold and respect the rights and responsibilities of all communities, present and future. Current conservation campaigns primarily address actions 2 and 3, with urgent upscaling of actions 1, 4, 5, and 6 needed to help deliver the post-2020 global biodiversity framework.
  •  
7.
  • Rockström, Johan, et al. (författare)
  • Identifying a Safe and Just Corridor for People and the Planet
  • 2021
  • Ingår i: Earth's Future. - 2328-4277. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Keeping the Earth system in a stable and resilient state, to safeguard Earth's life support systems while ensuring that Earth's benefits, risks, and related responsibilities are equitably shared, constitutes the grand challenge for human development in the Anthropocene. Here, we describe a framework that the recently formed Earth Commission will use to define and quantify target ranges for a safe and just corridor that meets these goals. Although safe and just Earth system targets are interrelated, we see safe as primarily referring to a stable Earth system and just targets as being associated with meeting human needs and reducing exposure to risks. To align safe and just dimensions, we propose to address the equity dimensions of each safe target for Earth system regulating systems and processes. The more stringent of the safe or just target ranges then defines the corridor. Identifying levers of social transformation aimed at meeting the safe and just targets and challenges associated with translating the corridor to actors at multiple scales present scope for future work.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy