SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aerts Rien) "

Sökning: WFRF:(Aerts Rien)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andresen, Louise C., 1974, et al. (författare)
  • Free amino acids in the rhizosphere
  • 2014
  • Ingår i: 19th European Nitrogen Cycle Meeting. September 10-12th 2014, Gent, Belgium.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Andresen, Louise C., 1974, et al. (författare)
  • Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming
  • 2022
  • Ingår i: Mycorrhiza. - : Springer Science and Business Media LLC. - 0940-6360 .- 1432-1890. ; 32:3-4, s. 305-313
  • Tidskriftsartikel (refereegranskat)abstract
    • The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.
  •  
3.
  • Bokhorst, Stef Frederik, et al. (författare)
  • Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 19:1, s. 64-74
  • Forskningsöversikt (refereegranskat)abstract
    • Environmental manipulation studies are integral to determining biological consequences of climate warming. Open Top Chambers (OTCs) have been widely used to assess summer warming effects on terrestrial biota, with their effects during other seasons normally being given less attention even though chambers are often deployed year-round. In addition, their effects on temperature extremes and freeze-thaw events are poorly documented. To provide robust documentation of the microclimatic influences of OTCs throughout the year, we analysed temperature data from 20 studies distributed across polar and alpine regions. The effects of OTCs on mean temperature showed a large range (-0.9 to 2.1 degrees C) throughout the year, but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related (R-2 = 0.70) with irradiance, indicating that PAR can be used to predict the mean warming effect of OTCs. Deeper snow trapped in OTCs also induced higher temperatures at soil/vegetation level. OTC-induced changes in the frequency of freeze-thaw events included an increase in autumn and decreases in spring and summer. Frequency of high-temperature events in OTCs increased in spring, summer and autumn compared with non-manipulated control plots. Frequency of low-temperature events was reduced by deeper snow accumulation and higher mean temperatures. The strong interactions identified between aspects of ambient environmental conditions and effects of OTCs suggest that a detailed knowledge of snow depth, temperature and irradiance levels enables us to predict how OTCs will modify the microclimate at a particular site and season. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming studies and for more informed design of future experiments. However, a need remains to quantify OTC effects on water availability and wind speed (affecting, for example, drying rates and water stress) in combination with microclimate measurements at organism level.
  •  
4.
  • Cornelissen, Johannes H C, et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
5.
  • Cornwell, William K., et al. (författare)
  • Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  • 2008
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 11:10, s. 1065-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.
  •  
6.
  • Handa, I. Tanya, et al. (författare)
  • Consequences of biodiversity loss for litter decomposition across biomes
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 509:7499, s. 218-221
  • Tidskriftsartikel (refereegranskat)abstract
    • The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere(1-3). Decomposition is driven by a vast diversity of organisms that are structured in complex food webs(2,4). Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical(4-6) given the rapid loss of species worldwide and the effects of this loss on human well-being(7-9). Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition(4-6,10), key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism(4,9-12). Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.
  •  
7.
  • Hicks Pries, Caitlin E., et al. (författare)
  • Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:12, s. 4508-4519
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems.
  •  
8.
  • Keuper, Frida, et al. (författare)
  • A frozen feast : thawing permafrost increases plant-available nitrogen in subarctic peatlands
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 18:6, s. 1998-2007
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the world's northern peatlands are underlain by rapidly thawing permafrost. Because plant production in these peatlands is often nitrogen (N)-limited, a release of N stored in permafrost may stimulate net primary production or change species composition if it is plant-available. In this study, we aimed to quantify plant-available N in thawing permafrost soils of subarctic peatlands. We compared plant-available N-pools and -fluxes in near-surface permafrost (010cm below the thawfront) to those taken from a current rooting zone layer (515cm depth) across five representative peatlands in subarctic Sweden. A range of complementary methods was used: extractions of inorganic and organic N, inorganic and organic N-release measurements at 0.5 and 11 degrees C (over 120days, relevant to different thaw-development scenarios) and a bioassay with Poa alpina test plants. All extraction methods, across all peatlands, consistently showed up to seven times more plant-available N in near-surface permafrost soil compared to the current rooting zone layer. These results were supported by the bioassay experiment, with an eightfold larger plant N-uptake from permafrost soil than from other N-sources such as current rooting zone soil or fresh litter substrates. Moreover, net mineralization rates were much higher in permafrost soils compared to soils from the current rooting zone layer (273mgNm-2 and 1348mgNm-2 per growing season for near-surface permafrost at 0.5 degrees C and 11 degrees C respectively, compared to -30mgNm-2 for current rooting zone soil at 11 degrees C). Hence, our results demonstrate that near-surface permafrost soil of subarctic peatlands can release a biologically relevant amount of plant available nitrogen, both directly upon thawing as well as over the course of a growing season through continued microbial mineralization of organically bound N. Given the nitrogen-limited nature of northern peatlands, this release may have impacts on both plant productivity and species composition.
  •  
9.
  • Keuper, Frida, et al. (författare)
  • A race for space? : How Sphagnum fuscumstabilizes vegetation composition during long-termclimate manipulations
  • 2011
  • Ingår i: Global Change Biology. - : Blackwell. - 1354-1013 .- 1365-2486. ; 17:6, s. 2162-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong climate warming is predicted at higher latitudes this century, with potentially major consequences forproductivity and carbon sequestration. Although northern peatlands contain one-third of the world’s soil organiccarbon, little is known about the long-term responses to experimental climate change of vascular plant communities inthese Sphagnum-dominated ecosystems.We aimed to see how long-term experimental climate manipulations, relevantto different predicted future climate scenarios, affect total vascular plant abundance and species composition whenthe community is dominated by mosses. During 8 years, we investigated how the vascular plant community of aSphagnum fuscum-dominated subarctic peat bog responded to six experimental climate regimes, including factorialcombinations of summer as well as spring warming and a thicker snow cover. Vascular plant species composition inour peat bog was more stable than is typically observed in (sub)arctic experiments: neither changes in total vascularplant abundance, nor in individual species abundances, Shannon’s diversity or evenness were found in response tothe climate manipulations. For three key species (Empetrum hermaphroditum, Betula nana and S. fuscum) we alsomeasured whether the treatments had a sustained effect on plant length growth responses and how these responsesinteracted. Contrasting with the stability at the community level, both key shrubs and the peatmoss showed sustainedpositive growth responses at the plant level to the climate treatments. However, a higher percentage of mossencroachedE. hermaphroditum shoots and a lack of change in B. nana net shrub height indicated encroachment byS. fuscum, resulting in long-term stability of the vascular community composition: in a warmer world, vascular speciesof subarctic peat bogs appear to just keep pace with growing Sphagnum in their race for space. Our findings contributeto general ecological theory by demonstrating that community resistance to environmental changes does notnecessarily mean inertia in vegetation response.
  •  
10.
  • Keuper, Frida, et al. (författare)
  • Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species
  • 2017
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 23:10, s. 4257-4266
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake (N-15-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep-(thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow-(Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their biomass production beyond the already established impact of warming-driven enhanced shallow N-mineralization. This may result in shifts in plant community composition and may partially counteract the increased carbon losses from thawing permafrost.
  •  
11.
  • Keuper, Frida, et al. (författare)
  • Tundra in the rain : Differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra
  • 2012
  • Ingår i: Ambio. - : Springer Netherlands. - 0044-7447 .- 1654-7209. ; 41:Suppl. 3, s. 269-280
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.
  •  
12.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
13.
  • Krab, Eveline J., et al. (författare)
  • Northern peatland Collembola communities unaffected by three summers of simulated extreme precipitation
  • 2014
  • Ingår i: Agriculture, Ecosystems & Environment. Applied Soil Ecology. - : Elsevier BV. - 0929-1393 .- 1873-0272. ; 79, s. 70-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme climate events are observed and predicted to increase in frequency and duration in high-latitudeecosystems as a result of global climate change. This includes extreme precipitation events, which maydirectly impact on belowground food webs and ecosystem functioning by their physical impacts and byaltering local soil moisture conditions.We assessed responses of the Collembola community in a northern Sphagnum fuscum-dominatedombrotrophic peatland to three years of experimentally increased occurrence of extreme precipitationevents. Annual summer precipitation was doubled (an increase of 200 mm) by 16 simulated extremerain events within the three months growing season, where on each occasion 12.5 mm of rain was addedwithin a few minutes. Despite this high frequency and intensity of the rain events, no shifts in Collemboladensity, relative species abundances and community weighted means of three relevant traits (moisturepreference, vertical distribution and body size) were observed. This strongly suggests that the peatlandCollembola community is unaffected by the physical impacts of extreme precipitation and the short-termvariability in moisture conditions. The lack of response is most likely reinforced by the fact that extremeprecipitation events do not seem to alter longer-term soil moisture conditions in the peat layers inhabitedby soil fauna.This study adds evidence to the observation that the biotic components of northern ombrotrophicpeatlands are hardly responsive to an increase in extreme summer precipitation events. Given the importance of these ecosystems for the global C balance, these findings significantly contribute to the currentknowledge of the ecological impact of future climate scenarios. (C) 2014 Elsevier B.V. All rights reserved.
  •  
14.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
15.
  • Rijkers, Ruud, et al. (författare)
  • Optimal growth temperature of Arctic soil bacterial communities increases under experimental warming
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:20, s. 6050-6064
  • Tidskriftsartikel (refereegranskat)abstract
    • Future climate warming in the Arctic will likely increase the vulnerability of soil carbon stocks to microbial decomposition. However, it remains uncertain to what extent decomposition rates will change in a warmer Arctic, because extended soil warming could induce temperature adaptation of bacterial communities. Here we show that experimental warming induces shifts in the temperature–growth relationships of bacterial communities, which is driven by community turnover and is common across a diverse set of 8 (sub) Arctic soils. The optimal growth temperature (Topt) of the soil bacterial communities increased 0.27 ± 0.039 (SE) and 0.07 ± 0.028°C per °C of warming over a 0–30°C gradient, depending on the sampling moment. We identify a potential role for substrate depletion and time-lag effects as drivers of temperature adaption in soil bacterial communities, which possibly explain discrepancies between earlier incubation and field studies. The changes in Topt were accompanied by species-level shifts in bacterial community composition, which were mostly soil specific. Despite the clear physiological responses to warming, there was no evidence for a common set of temperature-responsive bacterial amplicon sequence variants. This implies that community composition data without accompanying physiological measurements may have limited utility for the identification of (potential) temperature adaption of soil bacterial communities in the Arctic. Since bacterial communities in Arctic soils are likely to adapt to increasing soil temperature under future climate change, this adaptation to higher temperature should be implemented in soil organic carbon modeling for accurate predictions of the dynamics of Arctic soil carbon stocks.
  •  
16.
  • Weedon, James T., et al. (författare)
  • Community adaptation to temperature explains abrupt soil bacterial community shift along a geothermal gradient on Iceland
  • 2023
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717. ; 177
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how and why soil microbial communities respond to temperature changes is important for understanding the drivers of microbial distribution and abundance. Studying soil microbe responses to warming is often made difficult by concurrent warming effects on soil and vegetation and by a limited number of warming levels preventing the detection of non-linear effects. A unique area in Iceland, where soil temperatures have recently increased due to geothermic activity, created a stable warming gradient in both grassland (dominated by Agrostis capillaris) and forest (Picea sitchensis) vegetation. By sampling soils which had been subjected to four years of temperature elevation (ambient (MAT 5.2 °C) to +40 °C), we investigated the shape of the response of soil bacterial communities to warming, and their associated community temperature adaptation. We used 16S rRNA amplicon sequencing to profile bacterial communities, and bacterial growth-based assays (3H-Leu incorporation) to characterize community adaptation using a temperature sensitivity index (SI, log (growth at 40 °C/4 °C)). Despite highly dissimilar bacterial community composition between the grassland and forest, they adapted similarly to warming. SI was 0.6 (equivalent to a minimum temperature for growth of between −6 and −7 °C) in both control plots. Both diversity and community composition, as well as SI, showed similar threshold dynamics along the soil temperature gradient. There were no significant changes up to soil warming of 6–9 °C above ambient, beyond which all indices shifted in parallel, with SI increasing from 0.6 to 1.5. The consistency of these responses provide evidence for an important role for temperature as a direct driver of bacterial community shifts along soil temperature gradients.
  •  
17.
  • Zhou, Shixing, et al. (författare)
  • Decomposition of leaf litter mixtures across biomes : The role of litter identity, diversity and soil fauna
  • 2020
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 108:6, s. 2283-2297
  • Tidskriftsartikel (refereegranskat)abstract
    • At broad spatial scales, the factors regulating litter decomposition remain ambiguous, with the understanding of these factors largely based on studies investigating site-specific single litter species, whereas studies using multi litter species mixtures across sites are rare. We exposed in microcosms containing single species and all possible mixtures of four leaf litter species differing widely in initial chemical and physical characteristics from a temperate forest to the climatic conditions of four different forests across the Northern Hemisphere for 1 year. Calcium, magnesium and condensed tannins predicted litter mass loss of single litter species and mixtures across forest types and biomes, regardless of species richness and microarthropod presence. However, relative mixture effects differed among forest types and varied with the access to the litter by microarthropods. Access to the microcosms by microarthropods modified the decomposition of individual litter species within mixtures, which differed among forest types independent of litter species richness and composition of litter mixtures. However, soil microarthropods generally only little affected litter decomposition. Synthesis. We conclude that litter identity is the dominant driver of decomposition across different forest types and the non-additive litter mixture effects vary among biomes despite identical leaf litter chemistry. These results suggest that across large spatial scales the environmental context of decomposing litter mixtures, including microarthropod communities, determine the decomposition of litter mixtures besides strong litter trait-based effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17
Typ av publikation
tidskriftsartikel (15)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Aerts, Rien (17)
Dorrepaal, Ellen (8)
van Bodegom, Peter M ... (6)
Keuper, Frida (5)
Boeckx, Pascal (3)
Björk, Robert G., 19 ... (3)
visa fler...
Alatalo, Juha M. (2)
Michelsen, Anders (2)
Andresen, Louise C., ... (2)
Bodé, Samuel (2)
Rütting, Tobias, 197 ... (2)
Aalto, Juha (1)
Hylander, Kristoffer (1)
Luoto, Miska (1)
Diaz, Sandra (1)
Schuur, Edward A. G. (1)
Natali, Susan M. (1)
Cornelissen, J. Hans ... (1)
Gough, Laura (1)
Molau, Ulf, 1951 (1)
Schmidt, Inger K. (1)
Welker, Jeffrey M. (1)
Nilsson, Mats (1)
Peichl, Matthias (1)
Tagesson, Torbern (1)
Ardö, Jonas (1)
Eklundh, Lars (1)
Lindblad, Karin (1)
Peeters, Edwin T. H. ... (1)
Allison, Steven D. (1)
De Frenne, Pieter (1)
Rousk, Johannes (1)
Karlsson, Staffan (1)
Parmentier, Frans-Ja ... (1)
Merinero, Sonia (1)
Luo, Yiqi (1)
Bååth, Erland (1)
Larson, Keith (1)
Li, Wei (1)
Alatalo, Juha, 1966- (1)
Jägerbrand, Annika K ... (1)
Jägerbrand, Annika K ... (1)
Totland, O (1)
Opedal, Øystein H. (1)
Alexander, Jake M. (1)
Lenoir, Jonathan (1)
Sarneel, Judith M. (1)
Kljun, Natascha (1)
Tietema, Albert (1)
Klemedtsson, Leif, 1 ... (1)
visa färre...
Lärosäte
Umeå universitet (10)
Göteborgs universitet (4)
Lunds universitet (4)
Sveriges Lantbruksuniversitet (4)
Stockholms universitet (3)
Högskolan i Gävle (2)
visa fler...
Jönköping University (2)
Uppsala universitet (1)
Mälardalens universitet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Lantbruksvetenskap (5)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy