SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Alexeyenko Andrey) "

Search: WFRF:(Alexeyenko Andrey)

  • Result 1-25 of 31
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Akan, Pelin, et al. (author)
  • Comprehensive analysis of the genome transcriptome and proteome landscapes of three tumor cell lines
  • 2012
  • In: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 4, s. 86-
  • Journal article (peer-reviewed)abstract
    • We here present a comparative genome, transcriptome and functional network analysis of three human cancer cell lines (A431, U251MG and U2OS), and investigate their relation to protein expression. Gene copy numbers significantly influenced corresponding transcript levels; their effect on protein levels was less pronounced. We focused on genes with altered mRNA and/or protein levels to identify those active in tumor maintenance. We provide comprehensive information for the three genomes and demonstrate the advantage of integrative analysis for identifying tumor-related genes amidst numerous background mutations by relating genomic variation to expression/protein abundance data and use gene networks to reveal implicated pathways.
  •  
4.
  • Alekseenko, Zhanna, et al. (author)
  • Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Journal article (peer-reviewed)abstract
    • Stem cell therapies for Parkinson’s disease (PD) have entered first-in-human clinical trials using a set of technically related methods to produce mesencephalic dopamine (mDA) neurons from human pluripotent stem cells (hPSCs). Here, we outline an approach for high-yield derivation of mDA neurons that principally differs from alternative technologies by utilizing retinoic acid (RA) signaling, instead of WNT and FGF8 signaling, to specify mesencephalic fate. Unlike most morphogen signals, where precise concentration determines cell fate, it is the duration of RA exposure that is the key-parameter for mesencephalic specification. This concentration-insensitive patterning approach provides robustness and reduces the need for protocol-adjustments between hPSC-lines. RA-specified progenitors promptly differentiate into functional mDA neurons in vitro, and successfully engraft and relieve motor deficits after transplantation in a rat PD model. Our study provides a potential alternative route for cell therapy and disease modelling that due to its robustness could be particularly expedient when use of autologous- or immunologically matched cells is considered.
  •  
5.
  •  
6.
  •  
7.
  • Alexeyenko, Andrey, et al. (author)
  • Comparative interactomics with Funcoup 2.0
  • 2012
  • In: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 40:D1, s. D821-D828
  • Journal article (peer-reviewed)abstract
    • FunCoup (http://FunCoup.sbc.su.se) is a database that maintains and visualizes global gene/protein networks of functional coupling that have been constructed by Bayesian integration of diverse high-throughput data. FunCoup achieves high coverage by orthology-based integration of data sources from different model organisms and from different platforms. We here present release 2.0 in which the data sources have been updated and the methodology has been refined. It contains a new data type Genetic Interaction, and three new species: chicken, dog and zebra fish. As FunCoup extensively transfers functional coupling information between species, the new input datasets have considerably improved both coverage and quality of the networks. The number of high-confidence network links has increased dramatically. For instance, the human network has more than eight times as many links above confidence 0.5 as the previous release. FunCoup provides facilities for analysing the conservation of subnetworks in multiple species. We here explain how to do comparative interactomics on the FunCoup website.
  •  
8.
  • Alexeyenko, Andrey, et al. (author)
  • Dynamic Zebrafish Interactome Reveals Transcriptional Mechanisms of Dioxin Toxicity
  • 2010
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:5, s. e10465-
  • Journal article (peer-reviewed)abstract
    • Background: In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio) interactome based on orthologs and interaction data from other eukaryotes. Methodology/Principal Findings: Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes). Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a) as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research. Conclusions/Significance: Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work) suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a.
  •  
9.
  • Alexeyenko, Andrey, et al. (author)
  • Efficient de novo assembly of large and complex genomes by massively parallel sequencing of Fosmid pools
  • 2014
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 15, s. 439-
  • Journal article (peer-reviewed)abstract
    • Background: Sampling genomes with Fosmid vectors and sequencing of pooled Fosmid libraries on the Illumina platform for massive parallel sequencing is a novel and promising approach to optimizing the trade-off between sequencing costs and assembly quality. Results: In order to sequence the genome of Norway spruce, which is of great size and complexity, we developed and applied a new technology based on the massive production, sequencing, and assembly of Fosmid pools (FP). The spruce chromosomes were sampled with similar to 40,000 bp Fosmid inserts to obtain around two-fold genome coverage, in parallel with traditional whole genome shotgun sequencing (WGS) of haploid and diploid genomes. Compared to the WGS results, the contiguity and quality of the FP assemblies were high, and they allowed us to fill WGS gaps resulting from repeats, low coverage, and allelic differences. The FP contig sets were further merged with WGS data using a novel software package GAM-NGS. Conclusions: By exploiting FP technology, the first published assembly of a conifer genome was sequenced entirely with massively parallel sequencing. Here we provide a comprehensive report on the different features of the approach and the optimization of the process. We have made public the input data (FASTQ format) for the set of pools used in this study: ftp://congenie.org/congenie/Nystedt_2013/Assembly/ProcessedData/FosmidPools/.(alternatively accessible via http://congenie.org/downloads).The software used for running the assembly process is available at http://research.scilifelab.se/andrej_alexeyenko/downloads/fpools/.
  •  
10.
  • Alexeyenko, Andrey, et al. (author)
  • Global networks of functional coupling in eukaryotes from comprehensive data integration
  • 2009
  • In: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 19:6, s. 1107-16
  • Journal article (peer-reviewed)abstract
    • No single experimental method can discover all connections in the interactome. A computational approach can help by integrating data from multiple, often unrelated, proteomics and genomics pipelines. Reconstructing global networks of functional coupling (FC) faces the challenges of scale and heterogeneity--how to efficiently integrate huge amounts of diverse data from multiple organisms, yet ensuring high accuracy. We developed FunCoup, an optimized Bayesian framework, to resolve these issues. Because interactomes comprise functional coupling of many types, FunCoup annotates network edges with confidence scores in support of different kinds of interactions: physical interaction, protein complex member, metabolic, or signaling link. This capability boosted overall accuracy. On the whole, the constructed framework was comprehensively tested to optimize the overall confidence and ensure seamless, automated incorporation of new data sets of heterogeneous types. Using over 50 data sets in seven organisms and extensively transferring information between orthologs, FunCoup predicted global networks in eight eukaryotes. For the Ciona intestinalis network, only orthologous information was used, and it recovered a significant number of experimental facts. FunCoup predictions were validated on independent cancer mutation data. We show how FunCoup can be used for discovering candidate members of the Parkinson and Alzheimer pathways. Cross-species pathway conservation analysis provided further support to these observations.
  •  
11.
  • Alexeyenko, Andrey, et al. (author)
  • Network enrichment analysis : extension of gene-set enrichment analysis to gene networks
  • 2012
  • In: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 13, s. 226-
  • Journal article (peer-reviewed)abstract
    • Background: Gene-set enrichment analyses (GEA or GSEA) are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. Results: We developed a method of network enrichment analysis (NEA) that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. Conclusions: The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.
  •  
12.
  • Alkasalias, Twana, et al. (author)
  • RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:8, s. E1413-E1421
  • Journal article (peer-reviewed)abstract
    • Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins over-expressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of a-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth.
  •  
13.
  • Bennet, Anna M, et al. (author)
  • Genetic association of sequence variants near AGER/NOTCH4 and dementia.
  • 2011
  • In: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 24:3, s. 475-84
  • Journal article (peer-reviewed)abstract
    • We performed a survey of sequence variation in a series of 20 genes involved in inflammation-related pathways for association with dementia risk in twin and unrelated case-control samples consisting in total of 1462 Swedish dementia casesand 1929 controls. For a total of 218 tested genetic markers, strong evidence was obtained implicating a region near AGER and NOTCH4 on chromosome 6p with replication across both samples and maximum combined significance at marker rs1800625 (OR = 1.37, 95% CI 1.19–1.56, p = 1.36×10(–6)). Imputation of the associated genomic interval provided an improved signal atrs8365, near the 3UTR of AGER (p = 7.34×10(–7)). The associated region extends 120 kb encompassing 11 candidate genes.While AGER encodes a key receptor for amyloid-β protein, an analysis of network context based upon genes now confirmed to contribute to dementia risk (AβPP, PSEN1, PSEN2, CR1, CLU, PICALM, and APOE) suggested strong functional coupling to NOTCH4, with no significant coupling to the remaining candidates. The implicated region occurs in the broad HLA locus on chromosome 6p, but associated markers were not in strong LD with known variants that regulate HLA gene function, suggesting that this may represent a signal distinct from immune-system pathways.
  •  
14.
  • Bersani, Cinzia, et al. (author)
  • Genome-wide identification of Wig-1 mRNA targets by RIP-Seq analysis
  • 2016
  • In: Oncotarget. - : Impact Journals LLC. - 1949-2553. ; 7:2, s. 1895-1911
  • Journal article (peer-reviewed)abstract
    • RNA-binding proteins (RBPs) play important roles in the regulation of gene expression through a variety of post-transcriptional mechanisms. The p53-induced RBP Wig-1 (Zmat3) binds RNA through its zinc finger domains and enhances stability of p53 and N-Myc mRNAs and decreases stability of FAS mRNA. To identify novel Wig-1-bound RNAs, we performed RNA-immunoprecipitation followed by high-throughput sequencing (RIP-Seq) in HCT116 and Saos-2 cells. We identified 286 Wig-1-bound mRNAs common between the two cell lines. Sequence analysis revealed that AU-rich elements (AREs) are highly enriched in the 3'UTR of these Wig-1-bound mRNAs. Network enrichment analysis showed that Wig-1 preferentially binds mRNAs involved in cell cycle regulation. Moreover, we identified a 2D Wig-1 binding motif in HIF1A mRNA. Our findings confirm that Wig-1 is an ARE-BP that regulates cell cycle-related processes and provide a novel view of how Wig-1 may bind mRNA through a putative structural motif. We also significantly extend the repertoire of Wig-1 target mRNAs. Since Wig-1 is a transcriptional target of the tumor suppressor p53, these results have implications for our understanding of p53-dependent stress responses and tumor suppression.
  •  
15.
  • Brink, Mikael, et al. (author)
  • Protein profiling and network enrichment analysis in individuals before and after the onset of rheumatoid arthritis
  • 2019
  • In: Arthritis Research & Therapy. - : BioMed Central. - 1478-6362. ; 21:1
  • Journal article (peer-reviewed)abstract
    • Background: Antibodies and upregulated cytokines and chemokines predate the onset of rheumatoid arthritis (RA) symptoms. We aimed to identify the pathways related to the early processes leading to RA development, as well as potential novel biomarkers, using multiple protein analyses.Methods: A case-control study was conducted within the Biobank of northern Sweden. The plasma samples from 118 pre-symptomatic individuals (207 samples; median predating time 4.1 years), 79 early RA patients, and 74 matched controls were analyzed. The levels of 122 unique proteins with an acknowledged relationship to autoimmunity were analyzed using 153 antibodies and a bead-based multiplex system (FlexMap3D; Luminex Corp.). The data were analyzed using multifactorial linear regression model, random forest, and network enrichment analysis (NEA) based on the 10 most significantly differentially expressed proteins for each two-by-two group comparison, using the MSigDB collection of hallmarks.Results: There was a high agreement between the different statistical methods to identify the most significant proteins. The adipogenesis and interferon alpha response hallmarks differentiated pre-symptomatic individuals from controls. These two hallmarks included proteins involved in innate immunity. Between pre-symptomatic individuals and RA patients, three hallmarks were identified as follows: apical junction, epithelial mesenchymal transition, and TGF-beta signaling, including proteins suggestive of cell interaction, remodulation, and fibrosis. The adipogenesis and heme metabolism hallmarks differentiated RA patients from controls.Conclusions: We confirm the importance of interferon alpha signaling and lipids in the early phases of RA development. Network enrichment analysis provides a tool for a deeper understanding of molecules involved at different phases of the disease progression.
  •  
16.
  •  
17.
  • Brownstein, Catherine A., et al. (author)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • In: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Journal article (peer-reviewed)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
18.
  • Franzen, Bo, et al. (author)
  • A fine-needle aspiration-based protein signature discriminates benign from malignant breast lesions
  • 2018
  • In: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 12:9, s. 1415-1428
  • Journal article (peer-reviewed)abstract
    • There are increasing demands for informative cancer biomarkers, accessible via minimally invasive procedures, both for initial diagnostics and to follow-up personalized cancer therapy. Fine-needle aspiration (FNA) biopsy provides ready access to relevant tissues; however, the minute sample amounts require sensitive multiplex molecular analysis to achieve clinical utility. We have applied proximity extension assays (PEA) and NanoString (NS) technology for analyses of proteins and of RNA, respectively, in FNA samples. Using samples from patients with breast cancer (BC, n=25) or benign lesions (n=33), we demonstrate that these FNA-based molecular analyses (a) can offer high sensitivity and reproducibility, (b) may provide correct diagnosis in shorter time and at a lower cost than current practice, (c) correlate with results from routine analysis (i.e., benchmarking against immunohistochemistry tests for ER, PR, HER2, and Ki67), and (d) may also help identify new markers related to immunotherapy. A specific 11-protein signature, including FGF binding protein 1, decorin, and furin, distinguished all cancer patient samples from all benign lesions in our main cohort and in smaller replication cohort. Due to the minimally traumatic sampling and rich molecular information, this combined proteomics and transcriptomic methodology is promising for diagnostics and evaluation of treatment efficacy in BC.
  •  
19.
  • Franzen, Bo, et al. (author)
  • Protein profiling of fine-needle aspirates reveals subtype-associated immune signatures and involvement of chemokines in breast cancer
  • 2019
  • In: Molecular Oncology. - : WILEY. - 1574-7891 .- 1878-0261. ; 13:2, s. 376-391
  • Journal article (peer-reviewed)abstract
    • There are increasing demands for informative cancer biomarkers, accessible via minimally invasive procedures, both for initial diagnostics and for follow-up of personalized cancer therapy, including immunotherapy. Fine-needle aspiration (FNA) biopsy provides ready access to relevant tissue samples; however, the minute amounts of sample require sensitive multiplex molecular analysis to be of clinical biomarker utility. We have applied proximity extension assays (PEA) to analyze 167 proteins in FNA samples from patients with breast cancer (BC; n = 25) and benign lesions (n = 32). We demonstrate that the FNA BC samples could be divided into two main clusters, characterized by differences in expression levels of the estrogen receptor (ER) and the proliferation marker Ki67. This clustering corresponded to some extent to established BC subtypes. Our analysis also revealed several proteins whose expression levels differed between BC and benign lesions (e.g., CA9, GZMB, IL-6, VEGFA, CXCL11, PDL1, and PCD1), as well as several chemokines correlating with ER and Ki67 status (e.g., CCL4, CCL8, CCL20, CXCL8, CXCL9, and CXCL17). Finally, we also identified three signatures that could predict Ki67 status, ER status, and tumor grade, respectively, based on a small subset of proteins, which was dominated by chemokines. To our knowledge, expression profiles of CCL13 in benign lesions and BC have not previously been described but were shown herein to correlate with proliferation (P = 0.00095), suggesting a role in advanced BC. Given the broad functional range of the proteins analyzed, immune-related proteins were overrepresented among the observed alterations. Our pilot study supports the emerging role of chemokines in BC progression. Due to the minimally traumatic sampling and clinically important molecular information for therapeutic decisions, this methodology is promising for future immunoscoring and monitoring of treatment efficacy in BC.
  •  
20.
  • Frings, Oliver, 1982-, et al. (author)
  • MGclus : Network clustering employing shared neighbors
  • 2013
  • In: Molecular BioSystems. - : Royal Society of Chemistry (RSC). - 1742-206X .- 1742-2051. ; 9:7, s. 1670-1675
  • Journal article (peer-reviewed)abstract
    • Network analysis is an important tool for functional annotation of genes and proteins. A common approach to discern structure in a global network is to infer network clusters, or modules, and assume a functional coherence within each module, which may represent a complex or a pathway. It is however not trivial to define optimal modules. Although many methods have been proposed, it is unclear which methods perform best in general. It seems that most methods produce far from optimal results but in different ways. MGclus is a new algorithm designed to detect modules with a strongly interconnected neighborhood in large scale biological interaction networks. In our benchmarks we found MGclus to outperform other methods when applied to random graphs with varying degree of noise, and to perform equally or better when applied to biological protein interaction networks. MGclus is implemented in Java and utilizes the JGraphT graph library. It has an easy to use command-line interface and is available for download from http://sonnhammer.sbc.su.se/download/software/ MGclus/.
  •  
21.
  • Frings, Oliver, et al. (author)
  • Network Analysis of Functional Genomics Data : Application to Avian Sex-Biased Gene Expression
  • 2012
  • In: Scientific World Journal. - : Hindawi Limited. - 1537-744X. ; , s. 130491-
  • Journal article (peer-reviewed)abstract
    • Gene expression analysis is often used to investigate the molecular and functional underpinnings of a phenotype. However, differential expression of individual genes is limited in that it does not consider how the genes interact with each other in networks. To address this shortcoming we propose a number of network-based analyses that give additional functional insights into the studied process. These were applied to a dataset of sex-specific gene expression in the chicken gonad and brain at different developmental stages. We first constructed a global chicken interaction network. Combining the network with the expression data showed that most sex-biased genes tend to have lower network connectivity, that is, act within local network environments, although some interesting exceptions were found. Genes of the same sex bias were generally more strongly connected with each other than expected. We further studied the fates of duplicated sex-biased genes and found that there is a significant trend to keep the same pattern of sex bias after duplication. We also identified sex-biased modules in the network, which reveal pathways or complexes involved in sex-specific processes. Altogether, this work integrates evolutionary genomics with systems biology in a novel way, offering new insights into the modular nature of sex-biased genes.
  •  
22.
  • Giacomello, Stefania, et al. (author)
  • Spatially resolved transcriptome profiling in model plant species
  • 2017
  • In: Nature Plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 3:6
  • Journal article (peer-reviewed)abstract
    • Understanding complex biological systems requires functional characterization of specialized tissue domains. However, existing strategies for generating and analysing high-throughput spatial expression profiles were developed for a limited range of organisms, primarily mammals. Here we present the first available approach to generate and study highresolution, spatially resolved functional profiles in a broad range of model plant systems. Our process includes highthroughput spatial transcriptome profiling followed by spatial gene and pathway analyses. We first demonstrate the feasibility of the technique by generating spatial transcriptome profiles from model angiosperms and gymnosperms microsections. In Arabidopsis thaliana we use the spatial data to identify differences in expression levels of 141 genes and 189 pathways in eight inflorescence tissue domains. Our combined approach of spatial transcriptomics and functional profiling offers a powerful new strategy that can be applied to a broad range of plant species, and is an approach that will be pivotal to answering fundamental questions in developmental and evolutionary biology.
  •  
23.
  • Hasmats, Johanna, et al. (author)
  • Using whole exome sequencing to identify genetic candidates for carboplatin and gemcitabine induced toxicities
  • Journal article (other academic/artistic)abstract
    • Chemotherapies are associated with significant inter-individual variability in therapeutic effect and adverse drug reactions. In lung cancer the use of gemcitabine and carboplatin induces grade 3-4 myelosuppression in about ¼ of the patients while an equal fraction of patients are basically unaffected in terms of myelosuppressive side effects. We therefore set out to try to identify genetic markers for gemcitabine / carboplatin induced myelosuppression. We selected 32 patients that suffered extremely high neutropenia and thrombocytopenia (grade 3 or 4 after first chemotherapy cycle) or were virtually unaffected (grade 0-1 after the first chemotherapy cycle) by the chemotherapy out of 243 lung cancer patients treated with gemcitabine / carboplatin. These patients were exome sequenced and their genetic differences compared using six different bioinformatic strategies; whole exome non-synonymous SNV association analysis, deviation from Hardy-Weinberg equilibrium, analysis of genes selected by a priori biological knowledge, analysis of genes selected from gene expression meta-analysis of toxicity data sets, Ingenuity pathway analysis and FunCoup network enrichment analysis. All patients were successfully sequenced and 5000-7000 non-synonymous single nucleotide variants were identified in each patient. PI3 (elastase specific inhibitor in neutrophils) showed the strongest association in the single SNV analysis (nominal p=0.0005). Further, variants within IL37, an inhibitor of the innate immune system, and CSAG1, a tumor antigen, differed among the two patient groups and appeared among the top hits in several of the performed analysis, indicating that the approach identifies genetic variants associated with the immune system and tumor differentiation, which might be important for the sensitivity to chemotherapeutic agents. However, the associations reported here are in a need of replication before clinical interpretations can be made.
  •  
24.
  • Heijtz, Rochellys Diaz, et al. (author)
  • Calcyon mRNA expression in the frontal-striatal circuitry and its relationship to vesicular processes and ADHD
  • 2007
  • In: Behavioral and Brain Functions. - : Springer Science and Business Media LLC. - 1744-9081. ; 3:33
  • Journal article (peer-reviewed)abstract
    • Background: Calcyon is a single transmembrane protein predominantly expressed in the brain. Very recently, calcyon has been implicated in clathrin mediated endocytosis, a critical component of synaptic plasticity. At the genetic level, preliminary evidence supports an association between attention-deficit/hyperactivity disorder ( ADHD) and polymorphisms in the calcyon gene. As little is known about the potential role of calcyon in ADHD, animal models may provide important insights into this issue. Methods: We examined calcyon mRNA expression in the frontal-striatal circuitry of three- ,five-, and ten-week-old Spontaneously Hypertensive Rats ( SHR), the most commonly used animal model of ADHD, and Wistar-Kyoto ( WKY; the strain from which SHR were derived). As a complement, we performed a co-expression network analysis using a database of mRNA gene expression profiles of multiple brain regions in order to explore potential functional links of calcyon to other genes. Results: In all age groups, SHR expressed significantly more calcyon mRNA in the medial prefrontal and orbital frontal cortices than WKY rats. In contrast, in the motor cortex, dorsal striatum and nucleus accumbens, calcyon mRNA expression was only significantly elevated in SHR in younger animals. In both strains, calcyon mRNA levels decreased significantly with age in all regions studied. In the co-expression network analysis, we found a cluster of genes ( many of them poorly studied so far) strongly connected to calcyon, which may help elucidate its role in the brain. The pair-wise relations of calcyon with other genes support its involvement in clathrin mediated endocytosis and, potentially, some other membrane/vesicular processes. Interestingly, no link was found between calcyon and the dopamine D1 receptor, which was previously shown to interact with the C-terminal of calcyon. Conclusion: The results indicate an alteration in calcyon expression within the frontal-striatal circuitry of SHR, especially in areas involved in cognitive processes. These findings extend our understanding of the molecular alterations in SHR, a heuristically useful model of ADHD.
  •  
25.
  • Hilborn, Erik, et al. (author)
  • The regulation of hydroxysteroid 17 beta-dehydrogenase type 1 and 2 gene expression in breast cancer cell lines by estradiol, dihydrotestosterone, microRNAs, and genes related to breast cancer
  • 2017
  • In: Oncotarget. - : IMPACT JOURNALS LLC. - 1949-2553. ; 8:37, s. 62183-62194
  • Journal article (peer-reviewed)abstract
    • Aim. To investigate the influence of estrogen, androgen, microRNAs, and genes implicated in breast cancer on the expression of HSD17B1 and HSD17B2. Materials. Breast cancer cell lines ZR-75-1, MCF7, T47D, SK-BR-3, and the immortalized epithelial cell line MCF10A were used. Cells were treated either with estradiol or dihydrotestosterone for 6, 24, 48 hours, or 7 days or treated with miRNAs or siRNAs predicted to influence HSD17B expression Results and discussion. Estradiol treatment decreased HSD17B1 expression and had a time-dependent effect on HSD17B2 expression. This effect was lost in estrogen receptor-alpha down-regulated or negative cell lines. Dihydrotestosterone treatment increased HSD17B2 expression, with limited effect on HSD17B1 expression. No effect was seen in cells without AR or in combination with the AR inhibitor hydroxyflutamide. The miRNA-17 up-regulated HSD17B1, while miRNA-210 and miRNA-7-5p had up- and down-regulatory effect and miRNA-1304-3p reduced HSD17B1 expression. The miRNA-204-5p, 498, 205-3p and 579-3p reduced HSD17B2 expression. Downregulation of CX3CL1, EPHB6, and TP63 increased HSD17B1 and HSD17B2 expression, while GREB1 downregulation suppressed HSD17B1 and promoted HSD17B2 expression. Conclusion. We show that HSD17B1 and HSD17B2 are controlled by estradiol, dihydrotestosterone, and miRNAs, as well as modulated by several breast cancer-related genes, which could have future clinical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 31
Type of publication
journal article (31)
Type of content
peer-reviewed (29)
other academic/artistic (2)
Author/Editor
Alexeyenko, Andrey (31)
Sonnhammer, Erik L L (8)
Lundeberg, Joakim (5)
Lewensohn, Rolf (3)
Zhao, Z. (2)
Blennow, Kaj, 1958 (2)
show more...
Schnabel, R. (2)
Huss, Mikael (2)
Landegren, Ulf (2)
Kamali-Moghaddam, Ma ... (2)
Pan, J. (2)
McKay, S (2)
Lundberg, Emma (2)
Pedersen, Nancy L (2)
Wong, K (2)
Koyi, Hirsh (2)
Brandén, Eva (2)
Lee, D. (2)
Tu, D (2)
Rantapää-Dahlqvist, ... (2)
Frings, Oliver (2)
Alexeyenko, A (2)
Hong, Mun-Gwan (2)
Gatz, Margaret (2)
Lin, J. (2)
Giacomello, Stefania (2)
Franzén, Bo (2)
Lundquist, Anders, 1 ... (2)
Reynolds, Chandra A. (2)
Lejon, Kristina, 196 ... (2)
Auer, Gert (2)
Eriksson, Ulrika K (2)
Prince, Jonathan A (2)
Hatschek, Thomas (2)
Fang, L. (2)
Lorch, A. (2)
Brink, Mikael (2)
Marra, MA (2)
Kierkegaard, Jonas (2)
Frings, Oliver, 1982 ... (2)
Baillie, DL (2)
Mah, A (2)
Hunt-Newbury, R (2)
Viveiros, R (2)
Johnsen, R (2)
Anastas, D (2)
Halfnight, E (2)
Okada, HM (2)
Burglin, T (2)
Sonnhammer, E (2)
show less...
University
Karolinska Institutet (20)
Stockholm University (16)
Royal Institute of Technology (13)
Uppsala University (4)
Umeå University (3)
University of Gothenburg (2)
show more...
Lund University (2)
Linköping University (1)
Jönköping University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (30)
Swedish (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (13)
Natural sciences (12)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view