SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alfaro Eric J.) "

Sökning: WFRF:(Alfaro Eric J.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
2.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
3.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
4.
  • Aaron-Morrison, Arlene P., et al. (författare)
  • State of the climate in 2014
  • 2015
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 96
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the dozens of essential climate variables monitored each year in this report continued to follow their long-term trends in 2014, with several setting new records. Carbon dioxide, methane, and nitrous oxide-the major greenhouse gases released into Earth's atmosphere-once again all reached record high average atmospheric concentrations for the year. Carbon dioxide increased by 1.9 ppm to reach a globally averaged value of 397.2 ppm for 2014. Altogether, 5 major and 15 minor greenhouse gases contributed 2.94 W m-2 of direct radiative forcing, which is 36% greater than their contributions just a quarter century ago. Accompanying the record-high greenhouse gas concentrations was nominally the highest annual global surface temperature in at least 135 years of modern record keeping, according to four independent observational analyses. The warmth was distributed widely around the globe's land areas, Europe observed its warmest year on record by a large margin, with close to two dozen countries breaking their previous national temperature records; many countries in Asia had annual temperatures among their 10 warmest on record; Africa reported above-average temperatures across most of the continent throughout 2014; Australia saw its third warmest year on record, following record heat there in 2013; Mexico had its warmest year on record; and Argentina and Uruguay each had their second warmest year on record. Eastern North America was the only major region to observe a below-average annual temperature. But it was the oceans that drove the record global surface temperature in 2014. Although 2014 was largely ENSO-neutral, the globally averaged sea surface temperature (SST) was the highest on record. The warmth was particularly notable in the North Pacific Ocean where SST anomalies signaled a transition from a negative to positive phase of the Pacific decadal oscillation. In the winter of 2013/14, unusually warm water in the northeast Pacific was associated with elevated ocean heat content anomalies and elevated sea level in the region. Globally, upper ocean heat content was record high for the year, reflecting the continued increase of thermal energy in the oceans, which absorb over 90% of Earth's excess heat from greenhouse gas forcing. Owing to both ocean warming and land ice melt contributions, global mean sea level in 2014 was also record high and 67 mm greater than the 1993 annual mean, when satellite altimetry measurements began. Sea surface salinity trends over the past decade indicate that salty regions grew saltier while fresh regions became fresher, suggestive of an increased hydrological cycle over the ocean expected with global warming. As in previous years, these patterns are reflected in 2014 subsurface salinity anomalies as well. With a now decade-long trans-basin instrument array along 26°N, the Atlantic meridional overturning circulation shows a decrease in transport of-4.2 ± 2.5 Sv decade-1. Precipitation was quite variable across the globe. On balance, precipitation over the world's oceans was above average, while below average across land surfaces. Drought continued in southeastern Brazil and the western United States. Heavy rain during April-June led to devastating floods in Canada's Eastern Prairies. Above-normal summer monsoon rainfall was observed over the southern coast of West Africa, while drier conditions prevailed over the eastern Sahel. Generally, summer monsoon rainfall over eastern Africa was above normal, except in parts of western South Sudan and Ethiopia. The south Asian summer monsoon in India was below normal, with June record dry. Across the major tropical cyclone basins, 91 named storms were observed during 2014, above the 1981-2010 global average of 82. The Eastern/Central Pacific and South Indian Ocean basins experienced significantly above-normal activity in 2014; all other basins were either at or below normal. The 22 named storms in the Eastern/Central Pacific was the basin's most since 1992. Similar to 2013, the North Atlantic season was quieter than most years of the last two decades with respect to the number of storms, despite the absence of El Niño conditions during both years. In higher latitudes and at higher elevations, increased warming continued to be visible in the decline of glacier mass balance, increasing permafrost temperatures, and a deeper thawing layer in seasonally frozen soil. In the Arctic, the 2014 temperature over land areas was the fourth highest in the 115-year period of record and snow melt occurred 20-30 days earlier than the 1998-2010 average. The Greenland Ice Sheet experienced extensive melting in summer 2014. The extent of melting was above the 1981-2010 average for 90% of the melt season, contributing to the second lowest average summer albedo over Greenland since observations began in 2000 and a record-low albedo across the ice sheet for August. On the North Slope of Alaska, new record high temperatures at 20-m depth were measured at four of five permafrost observatories. In September, Arctic minimum sea ice extent was the sixth lowest since satellite records began in 1979. The eight lowest sea ice extents during this period have occurred in the last eight years. Conversely, in the Antarctic, sea ice extent countered its declining trend and set several new records in 2014, including record high monthly mean sea ice extent each month from April to November. On 20 September, a record large daily Antarctic sea ice extent of 20.14 × 106 km2 occurred. The 2014 Antarctic stratospheric ozone hole was 20.9 million km2 when averaged from 7 September to 13 October, the sixth smallest on record and continuing a decrease, albeit statistically insignificant, in area since 1998.
  •  
5.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
6.
  • Hidalgo, Hugo G., et al. (författare)
  • Hydrological climate change projections for Central America
  • 2013
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 495, s. 94-112
  • Tidskriftsartikel (refereegranskat)abstract
    • Runoff climate change projections for the 21st century were calculated from a suite of 30 General Circulation Model (GCM) simulations for the A1B emission scenario in a 0.5 degrees x 0.5 degrees grid over Central America. The GCM data were downscaled using a version of the Bias Correction and Spatial Downscaling (BCSD) method and then used in the Variable Infiltration Capacity (VIC) macroscale hydrological model. The VIC model showed calibration skill in Honduras, Nicaragua, Costa Rica and Panama, but the results for some of the northern countries (Guatemala, El Salvador and Belize) and for the Caribbean coast of Central America was not satisfactory. Bias correction showed to remove effectively the biases in the GCMs. Results of the projected climate in the 2050-2099 period showed median significant reductions in precipitation (as much as 5-10%) and runoff (as much as 10-30%) in northern Central America. Therefore in this sub-region the prevalence of severe drought may increase significantly in the future under this emissions scenario. Northern Central America could warm as much as 3 degrees C during 2050-2099 and southern Central America could reach increases as much as 4 degrees C during the same period. The projected dry pattern over Central America is consistent with a southward displacement of the Intertropical Convergence Zone (ITCZ). In addition, downscaling of the NCEP/NCAR Reanalysis data from 1948 to 2012 and posterior run in VIC, for two locations in the northern and southern sub-regions of Central America, suggested that the annual runoff has been decreasing since ca. 1980, which is consistent with the sign of the runoff changes of the GCM projections. However, the Reanalysis 1980-2012 drying trends are generally much stronger than the corresponding GCM trends. Among the possible reasons for that discrepancy are model deficiencies, amplification of the trends due to constructive interference with natural modes of variability in the Reanalysis data, errors in the Reanalysis (modeled) precipitation data, and that the drying signal is more pronounced than predicted by the emissions scenario used. A few studies show that extrapolations of future climate from paleoclimatic indicators project a wetter climate in northern Central America, which is inconsistent with the modeling results presented here. However, these types of extrapolations should be done with caution, as the future climate responds to an extra forcing mechanism (anthropogenic) that was not present prehistorically and therefore the response could also be different than in the past.
  •  
7.
  • Kemppinen, Julia, et al. (författare)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • Ingår i: GLOBAL ECOLOGY AND BIOGEOGRAPHY. - 1466-822X .- 1466-8238. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
8.
  • Maldonado, Tito, 1983-, et al. (författare)
  • A review of the main drivers and variability of Central America's Climate and seasonal forecast systems
  • 2018
  • Ingår i: Revista de biologia tropical. - : Universidad de Costa Rica. - 0034-7744 .- 2215-2075. ; 66, s. S153-S175
  • Forskningsöversikt (refereegranskat)abstract
    • Central America is a region susceptible to natural disasters and climate change. We reviewed the literature on the main atmospheric and oceanographic forces and climate modulators affecting Central America, for different spatial and time scales. We also reviewed the reported correlation between climate variability, natural hazards and climate change aspects (in the past and future). In addition, we examined the current state of seasonal prediction systems being applied to the region. At inter-annual scales, El Nino/Southern Oscillation is the main climate modulator; however, other indices such as the Tropical North Atlantic, Atlantic Multi-Decadal Oscillation and Pacific Decadal Oscillation, have shown a correlation with precipitation anomalies in the region. Current seasonal forecast systems in the region have shown a constant development, including incorporation of different approaches ranging from statistical to dynamical downscaling, improving prediction of variables such as precipitation. Many studies have revealed the need of including -in addition to the climatic information-socio-economic variables to assess the impact of natural disasters and climate change in the region. These studies highlight the importance of socio-economic and human life losses associated with the impacts caused by natural hazards for organizations and governments.
  •  
9.
  • Maldonado, Tito (författare)
  • Inter-annual variability of rainfall in Central America : Connection with global and regional climate modulators
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Central America is a region regularly affected by natural disasters, with most of them having a hydro-meteorological origin. Therefore, the understanding of annual changes of precipitation upon the region is relevant for planning and mitigation of natural disasters. This thesis focuses on studying the precipitation variability at annual scales in Central America within the framework of the Swedish Centre for Natural Disaster Science. The aims of this thesis are: i) to establish the main climate variability sources during the boreal winter, spring and summer by using different statistical techniques, and ii) to study the connection of sea surface temperature anomalies of the neighbouring oceans with extreme precipitation events in the region.Composites analysis is used to establish the variability sources during winter. Canonical correlation analysis is employed to explore the connection between the SST anomalies and extreme rainfall events during May-June and August-October. In addition, a global circulation model is used to replicate the results found with canonical correlation analysis, but also to study the relationship between the Caribbean Sea surface temperature and the Caribbean low-level jet.The results show that during winter both El Niño Southern Oscillation and the Pacific Decadal Oscillation, are associated with changes of the sea level pressure near the North Atlantic Subtropical High and the Aleutian low. In addition, the El Niño Southern Oscillation signal is intensified (destroyed) when El Niño and the Pacific Decadal Oscillation have the same (opposite) sign.Sea surface temperature anomalies have been related to changes in both the amount and temporal distribution of rainfall. Precipitation anomalies during May-June are associated with sea surface temperature anomalies over the Tropical North Atlantic region. Whereas, precipitation anomalies during August-September-October are associated with the sea surface temperature anomalies contrast between the Pacific Ocean and the Tropical North Atlantic region. Model outputs show no association between sea surface temperature gradients and the Caribbean low-level jet intensification. Canonical correlation analysis shows potential for prediction of extreme precipitation events, however, forecast validation shows that socio-economic variables must be included for more comprehensive natural disaster assessments.
  •  
10.
  • Maldonado, Tito, 1983-, et al. (författare)
  • Regional precipitation estimations in Central America using the Weather Research and Forecast model
  • 2018
  • Ingår i: Revista de biologia tropical. - : REVISTA DE BIOLOGIA TROPICAL. - 0034-7744 .- 2215-2075. ; 66:1, s. S231-S254
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the regional climate model WRF, and the NCEP-NCAR Reanalysis Project data as boundary and initial conditions. regional precipitation for Central America was estimated by means of the dynamical downscaling technique for two selected periods: January 2000 and September 2007. Four-nested domains, d01, d02. d03 and d04 with a grid-resolution of 90 km, 30 km, 10 km. and 3.3 km respectively. were configured over this region. The runs were reinitialized every 5 days with 6 h of spin-up time for adjustment of the model. A total of eight experiments (four per month) were tested in order to study: a) two important Cumulus Parameterization Schemes (CPS): Kain-Fritsch (KF) and Grell-Devenyi (GD); and b) the physical interaction between nested domains (one- and two-way nesting), during each simulated month. The modeled precipitation was in agreement with observations for January 2000, and also captured the mean climate features of rainfall concerning magnitude, and spatial distribution, such as the particular precipitation contrast between the Pacific and the Caribbean coast. Outputs of the coarse domains (d01, d02, and d03) for September 2007 revealed differences between experiments within the domains when a visual comparison of the spatial distribution was made. However, for the inner grid (d04), all the experiments, showed a similar spatial distribution and magnitude estimation, mainly in those runs using one-way nesting configuration. The results for the month of September differed substantially with the observations, which could be related to associated deficiencies in the boundary condition that do not reproduce well the transition periods from warm to cold ENSO episodes for the selected periods of study. In all the experiments, the KF scheme calculated more precipitation than the GD scheme and it was associated to the ability of the GD scheme to reproduce spotty but intense rainfall, and apparently, this scheme was reluctant to activate, showing frequent events of low intensity rain. However, when rainfall did develop, it was very intense. Also, the time series did not replicate specific precipitation events. Thus, the 5-days integration period used in this study was not enough to reproduce short-period precipitation events. Finally, physical interaction issues between the nested domains were reflected in discontinuities in the precipitation field, which have been associated with mass field adjustment in the CPS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy