SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alsafran Mohammed H. S. A.) "

Sökning: WFRF:(Alsafran Mohammed H. S. A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
2.
  • Alsafran, Mohammed H.S.A., et al. (författare)
  • Variation in plant litter decomposition rates across extreme dry environments in Qatar
  • 2017
  • Ingår i: Arab World Geographer. - : The University of Akron Press. - 1480-6800. ; 20:2-3, s. 252-261
  • Forskningsöversikt (refereegranskat)abstract
    • Decomposition of plant litter is a key process for transfer of carbon and nutrients in ecosystems. Carbon contained in decaying biomass is released to the atmosphere as respired CO2, a greenhouse gas that contributes to global warming. To our knowledge, there have been no studies on litter decomposition in terrestrial ecosystems in the Arabian peninsula. Here we used commercial teabags (green tea, rooibos tea) as standard substrates to study decomposition rates across contrasting ecosystems in Qatar. Teabags were buried under and beside Acacia tortilis trees, in depressions with abundant grass vegetation, in saltmarsh without and with vegetation, under Zygophyllum qatarense in drylands, in natural mangrove and in planted mangrove. There were significant site effects across ecosystems on decomposition rate (k), litter stabilisation factor (S), final weight of green tea and final weight of rooibos tea. Mangrove and depressions with grassland had the smallest amounts of remaining green and rooibos tea after the incubation period (69-82 days), while teabags buried under A. tortilis and in saltmarsh without vegetation had the largest amounts. Thus decomposition rates differ among ecosystems in the desert environment. Further multi-year and site studies are needed to identify factors that influence decomposition rates across sites in extreme environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy