SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amazo Gómez E. M.) "

Sökning: WFRF:(Amazo Gómez E. M.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pietrow, A. G. M., et al. (författare)
  • A comparative study of two X2.2 and X9.3 solar flares observed with HARPS-N : Reconciling Sun-as-a-star spectroscopy and high-spatial resolution solar observations in the context of the solar-stellar connection
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Stellar flares cannot be spatially resolved, which complicates ascertaining the physical processes behind particular spectral signatures. Due to their proximity to Earth, solar flares can serve as a stepping stone for understanding their stellar counterparts, especially when using a Sun-as-a-star instrument and in combination with spatially resolved observations.Aims. We aim to understand the disk-integrated spectral behaviors of a confined X2.2 flare and its eruptive X9.3 successor, which had energies of 2.2 × 1031 erg and 9.3 × 1031 erg, respectively, as measured by Sun-as-a-star observations with the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N).Methods. The behavior of multiple photospheric (Na D1 & D2, Mg I at 5173 Å, Fe I at 6173 Å, and Mn I at 4031 Å) and chromospheric (Ca II H & K, Hα, Hβ, and He ID3) spectral lines were investigated by means of activity indices and contrast profiles. A number of different photospheric lines were also investigated by means of equivalent widths, and radial velocity measures, which were then related to physical processes directly observed in high-resolution observations made with the Swedish 1-m Solar Telescope (SST) and the Atmospheric Imaging Assembly (AIA) on board of the Solar Dynamics Observatory (SDO).Results. Our findings suggest a relationship between the evolving shapes of contrast profile time and the flare locations, which assists in constraining flare locations in disk-integrated observations. In addition, an upward bias was found in flare statistics based on activity indices derived from the Ca II H & K lines. In this case, much smaller flares cause a similar increase in the activity index as that produced by larger flares. Hα-based activity indices do not show this bias and are therefore less susceptible to activity jitter. Sodium line profiles show a strongly asymmetric response during flare activity, which is best captured with a newly defined asymmetrical sodium activity index. A strong flare response was detected in Mn I line profiles, which is unexpected and calls for further exploration. Intensity increases in Hα, Hβ, and certain spectral windows of AIA before the flare onset suggest their potential use as short-term flare predictors.
  •  
2.
  • Alvarado-Gomez, Julian D., et al. (författare)
  • Far beyond the Sun - I. The beating magnetic heart in Horologium
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 473:4, s. 4326-4338
  • Tidskriftsartikel (refereegranskat)abstract
    • A former member of the Hyades cluster, iota Horologii (iota Hor) is a planet-hosting Sun-like star which displays the shortest coronal activity cycle known to date (P-cyc similar to 1.6 yr). With an age of similar to 625 Myr, iota Hor is also the youngest star with a detected activity cycle. The study of its magnetic properties holds the potential to provide fundamental information to understand the origin of cyclic activity and stellar magnetism in late-type stars. In this series of papers, we present the results of a comprehensive project aimed at studying the evolving magnetic field in this star and how this evolution influences its circumstellar environment. This paper summarizes the first stage of this investigation, with results from a long-term observing campaign of iota Hor using ground-based high-resolution spectropolarimetry. The analysis includes precise measurements of the magnetic activity and radial velocity of the star, and their multiple time-scales of variability. In combination with values reported in the literature, we show that the long-term chromospheric activity evolution of iota Hor follows a beating pattern, caused by the superposition of two periodic signals of similar amplitude at P-1 similar or equal to 1.97 +/- 0.02 yr and P-2 similar or equal to 1.41 +/- 0.01 yr. Additionally, using the most recent parameters for iota Hor b in combination with our activity and radial velocity measurements, we find that stellar activity dominates the radial velocity residuals, making the detection of additional planets in this system challenging. Finally, we report here the first measurements of the surface longitudinal magnetic field strength of iota Hor, which displays varying amplitudes within +/- 4G and served to estimate the rotation period of the star (P-rot = 7.70(-0.67)(+0.18) d).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy