SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrade Talavera Yuniesky) "

Sökning: WFRF:(Andrade Talavera Yuniesky)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrade-Talavera, Yuniesky, et al. (författare)
  • S100A9 amyloid growth and S100A9 fibril-induced impairment of gamma oscillations in area CA3 of mouse hippocampus ex vivo is prevented by Bri2 BRICHOS
  • 2022
  • Ingår i: Progress in Neurobiology. - : Elsevier. - 0301-0082 .- 1873-5118. ; 219
  • Tidskriftsartikel (refereegranskat)abstract
    • The pro-inflammatory and highly amyloidogenic protein S100A9 is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases leading to cognitive impairment. Molecular chaperone activity of Bri2 BRICHOS has been demonstrated against a range of amyloidogenic polypeptides. Using a combination of thioflavin T fluorescence kinetic assay, atomic force microscopy and immuno electron microscopy we show here that recombinant Bri2 BRICHOS effectively inhibits S100A9 amyloid growth by capping amyloid fibrils. Using ex-vivo neuronal network electrophysiology in mouse brain slices we also show that both native S100A9 and amyloids of S100A9 disrupt cognition-relevant gamma oscillation power and rhythmicity in hippocampal area CA3 in a time- and protein conformation-dependent manner. Both effects were associated with Toll-like receptor 4 (TLR4) activation and were not observed upon TLR4 blockade. Importantly, S100A9 that had co-aggregated with Bri2 BRICHOS did not elicit degradation of gamma oscillations. Taken together, this work provides insights on the potential influence of S100A9 on cognitive dysfunction in Alzheimer's disease (AD) via gamma oscillation impairment from experimentally-induced gamma oscillations, and further highlights Bri2 BRICHOS as a chaperone against detrimental effects of amyloid self-assembly.
  •  
2.
  • Arroyo-García, Luis Enrique, et al. (författare)
  • Targeting galectin-3 to counteract spike-phase uncoupling of fast-spiking interneurons to gamma oscillations in Alzheimer’s disease
  • 2023
  • Ingår i: Translational Neurodegeneration. - : Springer Science and Business Media LLC. - 2047-9158. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer’s disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin-3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, the possible involvement of gal3 in the disruption of neuronal network oscillations typical of AD remains unknown. Methods: Here, we investigated the functional implications of gal3 signaling on experimentally induced gamma oscillations ex vivo (20–80 Hz) by performing electrophysiological recordings in the hippocampal CA3 area of wild-type (WT) mice and of the 5×FAD mouse model of AD. In addition, the recorded slices from WT mice under acute gal3 application were analyzed with RT-qPCR to detect expression of some neuroinflammation-related genes, and amyloid-β (Aβ) plaque load was quantified by immunostaining in the CA3 area of 6-month-old 5×FAD mice with or without Gal3 knockout (KO). Results: Gal3 application decreased gamma oscillation power and rhythmicity in an activity-dependent manner, which was accompanied by impairment of cellular dynamics in fast-spiking interneurons (FSNs) and pyramidal cells. We found that the gal3-induced disruption was mediated by the gal3 carbohydrate-recognition domain and prevented by the gal3 inhibitor TD139, which also prevented Aβ42-induced degradation of gamma oscillations. Furthermore, the 5×FAD mice lacking gal3 (5×FAD-Gal3KO) exhibited WT-like gamma network dynamics and decreased Aβ plaque load. Conclusions: We report for the first time that gal3 impairs neuronal network dynamics by spike-phase uncoupling of FSNs, inducing a network performance collapse. Moreover, our findings suggest gal3 inhibition as a potential therapeutic strategy to counteract the neuronal network instability typical of AD and other neurological disorders encompassing neuroinflammation and cognitive decline.
  •  
3.
  • Borroto-Escuela, Dasiel O., et al. (författare)
  • Receptor-Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment
  • 2018
  • Ingår i: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 23:6
  • Forskningsöversikt (refereegranskat)abstract
    • Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A-FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A-FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A-5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1-15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1-GalR2-5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.
  •  
4.
  • Chen, Gefei, et al. (författare)
  • Bri2 BRICHOS client specificity and chaperone activity are governed by assembly state
  • 2017
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • . Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer's disease the amyloid-beta peptide (A beta) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces A beta fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible nonfibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of A beta, while dimers strongly suppress A beta fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy